Multi-label imbalanced data enrichment process in neural net classifier training

Semantic scene classification, robotic state recognition, and many other real-world applications involve multi-label classification with imbalanced data. In this paper, we address these problems by using an enrichment process in neural net training. The enrichment process can manage the imbalanced data and train the neural net with high classification accuracy. Experimental results on a robotic arm controller show that our method has better generalization performance than traditional neural net training in solving the multi-label and imbalanced data problems.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Witold Pedrycz,et al.  Supervised Semantic Scene Classification Based on Low-Level Clustering and Relevance Feedback , 2004, EWIMT.

[3]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[4]  Andrew McCallum,et al.  Collective multi-label classification , 2005, CIKM '05.

[5]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[6]  Christos A. Papachristou,et al.  Self-Configurable Neural Network Processor for FIR Filter Applications , 2006, First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06).

[7]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[8]  Zhi-Hua Zhou,et al.  Exploratory Under-Sampling for Class-Imbalance Learning , 2006, ICDM.

[9]  Christos A. Papachristou,et al.  A Configurable FIR Filter Scheme based on an Adaptive Multilayer Network Structure , 2007, Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007).

[10]  H. Salazar,et al.  Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems , 2006, IEEE Transactions on Power Delivery.

[11]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[12]  Pádraig Cunningham,et al.  Stability problems with artificial neural networks and the ensemble solution , 2000, Artif. Intell. Medicine.

[13]  M. A. El-Gamal,et al.  Ensembles of Neural Networks for Fault Diagnosis in Analog Circuits , 2007, J. Electron. Test..

[14]  Christos A. Papachristou,et al.  Facial Image Associative Memory Model , 2007, Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007).

[15]  Yan Shi,et al.  Self-Organizing Fuzzy Clustering Neural Networks Controller for Robotic Manipulators , 2006, First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06).

[16]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[17]  JapkowiczNathalie,et al.  The class imbalance problem: A systematic study , 2002 .

[18]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[19]  Pitoyo Hartono,et al.  Adaptive neural network ensemble that learns from imperfect supervisor , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[20]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[21]  Mehmet Ali Arslan,et al.  The BP neural networks with data clustering enhancement-an emerging optimization tool , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[22]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[23]  M.P. Deshmukh,et al.  A novel fuzzy clustering neural network , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[24]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .