Smoothing and First Order Methods: A Unified Framework

We propose a unifying framework that combines smoothing approximation with fast first order algorithms for solving nonsmooth convex minimization problems. We prove that independently of the structure of the convex nonsmooth function involved, and of the given fast first order iterative scheme, it is always possible to improve the complexity rate and reach an $O(\varepsilon^{-1})$ efficiency estimate by solving an adequately smoothed approximation counterpart. Our approach relies on the combination of the notion of smoothable functions that we introduce with a natural extension of the Moreau-infimal convolution technique along with its connection to the smoothing mechanism via asymptotic functions. This allows for clarification and unification of several issues on the design, analysis, and potential applications of smoothing methods when combined with fast first order algorithms.

[1]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  D. Bertsekas Nondifferentiable optimization via approximation , 1975 .

[4]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[5]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[6]  M. Teboulle,et al.  A smoothing technique for nondifferentiable optimization problems , 1988 .

[7]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[8]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[9]  Alfred Auslender Penalty and Barrier Methods: A Unified Framework , 1999, SIAM J. Optim..

[10]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[11]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[12]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[13]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[14]  Marc Teboulle,et al.  Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..

[15]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[16]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[17]  Heinz H. Bauschke,et al.  The Baillon-Haddad Theorem Revisited , 2009, 0906.0807.

[18]  Marc Teboulle,et al.  Gradient-based algorithms with applications to signal-recovery problems , 2010, Convex Optimization in Signal Processing and Communications.

[19]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[20]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[21]  Yurii Nesterov,et al.  First-order methods of smooth convex optimization with inexact oracle , 2013, Mathematical Programming.