The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution.

Nancy R. Zhang | Elizabeth H. Williams | Joshua F. McMichael | David L. Gibbs | Alex S. Felmeister | Matthew A. Wyczalkowski | Andrew C. Adey | Ashley M. Laughney | Joseph T. Roland | Joshua D. Campbell | Alyce A. Chen | William J. R. Longabaugh | Erik A. Burlingame | Jeremy L. Muhlich | Cody N. Heiser | Sheila M. Reynolds | Julia L. Drewes | Vianne R. Gao | Austin N. Southard-Smith | D. Pe’er | G. Nolan | V. Thorsson | W. Longabaugh | N. Hacohen | A. Regev | R. Fulton | L. Tran | A. Kundaje | G. Getz | J. Marks | E. Boyden | G. Colditz | K. Kaestner | G. Mills | Akshay Balsubramani | K. Chin | H. Feiler | L. Esserman | J. Gray | P. Sorger | L. Ding | M. Wendl | N. Schultz | E. Cerami | I. Pe’er | K. Cole | O. Harismendy | N. Navin | D. Sudar | S. Achilefu | C. Rudin | X. Zhuang | Qin Zhu | K. Tan | Junhyong Kim | L. Mazutis | A. Raj | J. Aster | D. Aberle | K. Owzar | C. Iacobuzio-Donahue | Benjamin Izar | Asaf Rotem | C. Lian | Jia-Ren Lin | K. Flaherty | Judit Jané-Valbuena | O. Rozenblatt-Rosen | A. Shalek | M. Suvà | C. Maher | F. Chen | S. Sen | A. Maitra | S. Davies | Bruce E. Johnson | E. Demir | Jianjiong Gao | W. Kibbe | O. Ashenberg | R. Aft | J. Massagué | M. Snyder | R. Sears | T. Davidsen | K. Polyak | J. Goecks | R. Bueno | A. Fortunato | J. Hsieh | Long Gao | Yasin Uzun | P. Gao | Changya Chen | H. Chaib | C. Maley | E. Hwang | P. Massion | J. Guinney | C. Curtis | J. Ford | Sheng-Kwei Song | A. Marzo | L. Coussens | G. Boland | R. Coffey | J. Maris | A. Borowsky | U. Ladabaum | R. J. Mashl | O. Babur | D. Singer | Lihua Jiang | Q. Cai | M. Shrubsole | D. Diep | S. Vandekar | F. Hodi | W. Greenleaf | A. George | Artem Sokolov | Hanspeter Pfister | Yinyin Yuan | M. Nederlof | M. Lenburg | A. Spira | R. Chuaqui | J. Beane | E. Todres | Y. Shyr | S. Diskin | B. Lake | E. McKinley | A. Simmons | K. Lau | A. Hupalowska | D. Crichton | Robert West | Michael R. Angelo | Qi Liu | S. Hunger | S. Rodig | Y. Chang | Guillaume Thibault | I. Leshchiner | W. Gillanders | S. Vigneau | Philipp Oberdoerffer | S. Santagata | E. Kotler | D. Chatterjee | Siting Gan | Xiaolu Yang | Cynthia X Ma | S. Srivastava | D. Zhou | M. Chheda | Liang-Bo Wang | G. Patti | Chia-hui Chen | Y. Mossé | Ruiyang Liu | Aaron Horning | N. Wagle | F. Ademuyiwa | K. Lim | Fatemeh Alikarami | Sharmistha Ghosh | A. Resnick | J. Stein | A. Vossough | A. Waanders | A. Guimaraes | A. Vachani | Q. Sheng | R. Jayasinghe | R. Fields | E. Allen | I. D. Bruijn | G. Thomas | A. Sibley | Jeremy Gresham | C. Sears | Hao Wu | S. Puram | S. Janes | M. Meyerson | T. Lively | M. Mills | Hung-Yi Wu | S. Hanlon | R. Ness | K. Contrepois | Jennifer Frye | R. Rashid | Luke Ternes | Robert Krueger | Chi-Yun Wu | M. Slyper | Wenbao Yu | Yuankun Zhu | Yu-An Chen | J. Chan | Á. Quintanal‐Villalonga | Yubin Xie | V. Allaj | O. Chaudhary | J. Egger | M. Mattar | M. Offin | M. Bott | T. Hollmann | T. Nawy | T. Sen | Bruce Johnson | Z. Maliga | T. K. Guha | D. Schapiro | S. Mazzilli | G. Murphy | J. Kagan | D. Mallo | W. J. Huh | Julie A. Bletz | D. Barrett | Yantian Zhang | A. Bahmani | Zilu Zhou | S. Fisher | R. Anders | D. Bender | Bob Chen | D. DeNardo | L. Surrey | J. Riesterer | Brett E. Johnson | K. Siex | A. Kolodzie | S. Parmar | Dadong Zhang | Hayan Lee | Tao Peng | M. Giannakis | K. Bernt | Jennifer Rood | K. Krysan | J. Herndon | Y. Mori | Rachana Agarwal | Ryan Sullivan | E. Esplin | Sudipta Roy | K. Shoghi | Akimasa Hayashi | H. Kadara | Stephanie A. Nevins | C. Yapp | Nadezhda V Terekhanova | A. Kim | Tasleema Patel | Natalie B Collins | Kazuhito Sato | S. Strand | Miguel Ossandon | Barbara Engelhardt | Elizabeth Moses | E. Stover | M. Ryser | Suman Mondal | Ashley N. Reeb | C. R. Hansen | Nadezhda V. Terekhanova | Cynthia X. Ma | K. Bosse | A. Boire | A. Hata | M. Nikolov | Shelley E. Hwang | Madison Tyler | R. Mazurchuk | Lisa Thammavong | Houxiang Zhu | T. Ju | S. Oh | C. Betts | S. Sivagnanam | Jennifer Eng | Sidharth V. Puram | Aaron M. Horning | Luis H. Cisneros | Jennifer E. Rood | S. Goedegebuure | K. Helvie | Aaron M Horning | K. Gowers | Yiyun Lin | Jennifer L. Guerriero | Ruiyang Liu | S. Hughes | Ruben A. Aguilar | Christopher L Amos | K. Anton | L. Berry | Katie E. Blise | James B. Brooks | Wagma Caravan | R. Chiu | Shih-Kai Chu | Jaeyoung Chun | A. Creason | L. DelloStritto | Xengie Doan | S. Dubinett | Michael Dyer | Graham S. Erwin | Jennifer Flournoy | Allison Frangieh | Danielle Galipeau | Timothy A. Geiger | A. Gould | D. Gutman | Kathleen A. Harris | C. Heiser | Gilliam Hirst | H. Ijaz | C. Jacobson | L. Kalinke | R. Keith | Aziz Khan | Erika Kim | Mateusz Kopytra | Huy Lam | Rozelle Laquindanum | Carin Leonard | Rochelle R. Levy | Jerry Li | T. Longacre | M. C. Macedonia | Tyler Madison | Netta Makinen | Danika Makowski | Nicholas O. Markham | D. Martínez | Ignas Masilionais | Jennifer L. Mason | Daniel Merrick | J. Miessner | Motomi Mori | Ajit J. Nirmal | Edward Novikov | Brendan O’Connell | Anastasiya Olson | A. Ooms | Daniel Persson | Marvin Petty | K. Pourfarhangi | Qi Qiu | M. Ramirez-Solano | M. Reid | Sonia M. Rosenfield | Mariarita Santi-vicini | Deborah Schrag | Jeff Sheng | Phillip J. Storm | Timothy Su | D. Veis | Kun Zhang | Mi Zhang | Yanyan Zhao | Xiangzhu Zhu | C. Ma | A. Nirmal | B. Johnson | E. Kim | P. Storm | Kai Tan | J. Ford | J. Marks | Eran Kotler | Mianlei Zhang | T. Guha | Peng Gao | J. Campbell | B. Izar | Michael Angelo | T. Madison | Q. Qiu | Chia-Hui Chen | Á. Quintanal-Villalonga | L. Dellostritto | R. Agarwal | D. Schrag | Orr Ashenberg | S. Hwang | Madison A Tyler | Suman B Mondal | M. Suvà | I. Bruijn | Amir Bahmani | Rochelle Levy | Daniel Martinez | Brendan L O'Connell | Kiara Siex | Kathleen A Harris | Shamilene Sivagnanam | Mariarita Santi-Vicini | Shannon K Hughes | Tanja Davidsen | Swapnil Parmar | Milen Nikolov | Siri H. Strand | Jeremy Goecks | Stephen Dubinett | Hao Wu | J. Gray

[1]  Wei Liu,et al.  Matching Image and Sentence With Multi-Faceted Representations , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  K. Pienta,et al.  The issues with tissues: the wide range of cell fate separation enables the evolution of multicellularity and cancer , 2020, Medical Oncology.

[3]  Oliver Stegle,et al.  MOFA+: a probabilistic framework for comprehensive integration of structured single-cell data , 2019, bioRxiv.

[4]  Yiming Yang,et al.  Cumulus: a cloud-based data analysis framework for large-scale single-cell and single-nucleus RNA-seq , 2019, bioRxiv.

[5]  Jon C. Aster,et al.  Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging , 2019, Nature Protocols.

[6]  Aviv Regev,et al.  A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors , 2019, Nature Medicine.

[7]  Chelsea L. Michael,et al.  Cancer biology as revealed by the research autopsy , 2019, Nature Reviews Cancer.

[8]  P. Sorger,et al.  Facetto: Combining Unsupervised and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel Image Data , 2019, bioRxiv.

[9]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[10]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[11]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[12]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[13]  Samuel Demharter,et al.  Joint analysis of heterogeneous single-cell RNA-seq dataset collections , 2019, Nature Methods.

[14]  William Stafford Noble,et al.  Jointly Embedding Multiple Single-Cell Omics Measurements , 2019, bioRxiv.

[15]  Michael I. Jordan,et al.  A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements , 2019, ArXiv.

[16]  Shila Ghazanfar,et al.  The human body at cellular resolution: the NIH Human Biomolecular Atlas Program , 2019, Nature.

[17]  Caroline Uhler,et al.  Multi-Domain Translation by Learning Uncoupled Autoencoders , 2019, ArXiv.

[18]  J. Galon,et al.  Approaches to treat immune hot, altered and cold tumours with combination immunotherapies , 2019, Nature Reviews Drug Discovery.

[19]  Jingshu Wang,et al.  Data denoising with transfer learning in single-cell transcriptomics , 2019, Nature Methods.

[20]  R. West,et al.  Gene expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ , 2017, Genome Research.

[21]  Sarah A Teichmann,et al.  A test metric for assessing single-cell RNA-seq batch correction , 2018, Nature Methods.

[22]  Bertrand Z. Yeung,et al.  Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics , 2018, Genome Biology.

[23]  Bo Li,et al.  Nuclei multiplexing with barcoded antibodies for single-nucleus genomics , 2018, Nature Communications.

[24]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[25]  Monika S. Kowalczyk,et al.  A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade , 2018, Cell.

[26]  Joshua D. Campbell,et al.  Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions , 2018, Nature Communications.

[27]  Sudhir Srivastava,et al.  The Making of a PreCancer Atlas: Promises, Challenges, and Opportunities. , 2018, Trends in cancer.

[28]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[29]  Sandro Santagata,et al.  Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes , 2018, eLife.

[30]  Maneesh Kumar Singh,et al.  Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders , 2018, ECCV.

[31]  R. Weinberg,et al.  Understanding the tumor immune microenvironment (TIME) for effective therapy , 2018, Nature Medicine.

[32]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[33]  Smita Krishnaswamy,et al.  MAGAN: Aligning Biological Manifolds , 2018, ICML.

[34]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[35]  Salil S. Bhate,et al.  Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging , 2017, Cell.

[36]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[37]  Michael J. T. Stubbington,et al.  The Human Cell Atlas: from vision to reality , 2017, Nature.

[38]  Monika S. Kowalczyk,et al.  The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation , 2017, Nature.

[39]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[40]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[41]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[42]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[43]  J. C. Love,et al.  Seq-Well: A Portable, Low-Cost Platform for High-Throughput Single-Cell RNA-Seq of Low-Input Samples , 2017 .

[44]  J. Wargo,et al.  Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy , 2017, Cell.

[45]  Andrew C. Adey,et al.  Sequencing thousands of single-cell genomes with combinatorial indexing , 2017, Nature Methods.

[46]  Jeffrey R Moffitt,et al.  High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing , 2016, Proceedings of the National Academy of Sciences.

[47]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[48]  Joakim Lundeberg,et al.  Massive and parallel expression profiling using microarrayed single-cell sequencing , 2016, Nature Communications.

[49]  Honglak Lee,et al.  Deep Variational Canonical Correlation Analysis , 2016, ArXiv.

[50]  Hazen P Babcock,et al.  High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization , 2016, Proceedings of the National Academy of Sciences.

[51]  B. Hurwitz,et al.  Protocols.io: Virtual Communities for Protocol Development and Discussion , 2016, PLoS biology.

[52]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[53]  Edward S Boyden,et al.  Nanoscale Imaging of RNA with Expansion Microscopy , 2016, Nature Methods.

[54]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[55]  Yuri A. Mirokhin,et al.  A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline. , 2016, Journal of proteome research.

[56]  A. Regev,et al.  Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs , 2015, Genome Biology.

[57]  R. Dummer,et al.  The Genetic Evolution of Melanoma from Precursor Lesions. , 2015, The New England journal of medicine.

[58]  Peter K. Sorger,et al.  Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method , 2015, Nature Communications.

[59]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[60]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[61]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.

[62]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[63]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[64]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[65]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[66]  A. Regev,et al.  Preparation of Single‐Cell RNA‐Seq Libraries for Next Generation Sequencing , 2014, Current protocols in molecular biology.

[67]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[68]  Assaf Gottlieb,et al.  Reconstruction of the Mouse Otocyst and Early Neuroblast Lineage at Single-Cell Resolution , 2014, Cell.

[69]  J. Buhmann,et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry , 2014, Nature Methods.

[70]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[71]  Sean C. Bendall,et al.  Multiplexed ion beam imaging of human breast tumors , 2014, Nature Medicine.

[72]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[73]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[74]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[75]  Kai Licha,et al.  Optical imaging. , 2013, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[76]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[77]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.