Food Web Chaos without Subchain oscillators

A basic food web of four species is considered, of which there is a bottom prey X, two competing predators Y, Z on X, and a super predator W only on Y. The main finding is that population chaos does not require the existence of oscillators in any subsystem of the web. This minimum population chaos is demonstrated by increasing the relative reproductive rate of Z alone without alternating any other parameter nor any nullcline of the system. It occurs as the result of a period-doubling cascade from a Hopf bifurcation point. The method of singular perturbation is used to determine the Hopf bifurcation involved as well as the parameter values.

[1]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[2]  A. L. Koch,et al.  Coexistence resulting from an alternation of density dependent and density independent growth. , 1974, Journal of theoretical biology.

[3]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[4]  W. Calder,et al.  ECOLOGICAL SCALING: MAMMALS AND BIRDS , 1983 .

[5]  Bo Deng,et al.  Food chain chaos due to junction-fold point. , 2001, Chaos.

[6]  W. Calder,et al.  An allometric approach to population cycles of mammals , 1983 .

[7]  A. L. Koch,et al.  Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. , 1974, Journal of theoretical biology.

[8]  V. Rai Chaos in natural populations: edge or wedge? , 2004 .

[9]  Bo Deng,et al.  Food chain chaos due to Shilnikov's orbit. , 2002, Chaos.

[10]  Yang Kuang,et al.  Competition and stoichiometry: coexistence of two predators on one prey. , 2004, Theoretical population biology.

[11]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[12]  G. Tullock,et al.  Competitive Exclusion. , 1960, Science.

[13]  Bo Deng,et al.  Food chain chaos with canard explosion. , 2004, Chaos.

[14]  Sebastiaan A.L.M. Kooijman,et al.  Invading species can stabilize simple trophic systems , 2000 .

[15]  Carles Bonet,et al.  Singular Perturbation of Relaxed Periodic Orbits , 1987 .

[16]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[17]  Bo Deng,et al.  Food chain chaos due to transcritical point. , 2003, Chaos.

[18]  P Hogeweg,et al.  Interactive instruction on population interactions. , 1978, Computers in biology and medicine.

[19]  Bo Deng,et al.  Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells , 1999, Journal of mathematical biology.

[20]  Michael E. Gilpin,et al.  Spiral Chaos in a Predator-Prey Model , 1979, The American Naturalist.

[21]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[22]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[23]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[24]  Bo Deng,et al.  Chaotic Coexistence in a Top-predator Mediated Competitive Exclusive web , 2004 .

[25]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[26]  Stephen Schecter,et al.  Persistent unstable equilibria and closed orbits of a singularly perturbed equation , 1985 .

[27]  P. Waltman Competition models in population biology , 1983 .

[28]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[29]  Yingfei Yi,et al.  Relaxation Oscillations in a Class of Predator-Prey Systems , 2003 .

[30]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .