Identification of type 2 diabetes loci in 433,540 East Asian individuals

Cassandra N. Spracklen | Y. J. Kim | M. McCarthy | A. Morris | Mark A Pereira | M. Boehnke | Y. Kamatani | Y. Okada | T. Kawaguchi | J. Jonas | T. Wong | E. Tai | J. Chan | W. So | R. Ma | K. Mohlke | J. Rotter | J. Long | X. Shu | Jian-Min Yuan | W. Koh | Y. Xiang | W. Zheng | Jianjun Liu | M. Horikoshi | A. Mahajan | Y. S. Cho | Xiuqing Guo | C. Sabanayagam | A. Gloyn | Ching-Yu Cheng | X. Sim | Jin-Fang Chai | F. Takeuchi | Weihua Zhang | Y. Ida Chen | T. Katsuya | C. Khor | Jie Yao | D. Bowden | J. Chambers | N. Kato | R. V. van Dam | Y. Hung | L. Adair | Yii-Der I. Chen | Zhengming Chen | Yu Guo | Liming Li | A. Takahashi | F. Matsuda | P. Gordon-Larsen | F. Tsai | M. Ng | N. Lee | M. Gross | M. van de Bunt | K. Kohara | Y. Tabara | J. Below | Bong-Jo Kim | Juyoung Lee | S. Kwak | K. Park | Wei Huang | T. Kadowaki | T. Yamauchi | M. Nakatochi | Yuan-Tsong Chen | B. Tomlinson | M. Yokota | L. Chuang | Yaxing Wang | M. Akiyama | Chien-Hsiun Chen | Ken Yamamoto | Li-Ching Chang | M. Isono | Jer-Yuarn Wu | M. Chee | S. Maeda | L. Petty | Myung-Shik Lee | A. Howard | Ken Suzuki | W. Sheu | A. Luk | Sohee Han | Canqing Yu | Z. Bian | I. Millwood | R. Walters | J. Lv | S. M. Brotman | Wing Yee So | Yoon Shin Cho | M. Y. Hwang | Kuang Lin | S. Ichihara | C. Spracklen | Jinxiu Shi | S. Du | Sanghoon Moon | M. Igase | C. Hwu | Apoorva K Iyengar | Hannah J Perrin | C. Tam | Kyungheon Yoon | F. Bragg | V. J. Lim | Hyeok Sun Choi | Zhengming Chen | Hye-Mi Jang | G. Jiang | Dong Mun Shin | Liang Zhang | Hyeok Sun Choi | Mi Yeong Hwang | N. Lee | Dong Mun Shin | J. Yao | Sarah M. Brotman | Guozhi Jiang | Victor J. Y. Lim | Weihua Zhang | A. Morris | M. McCarthy | T. Wong | T. Wong | M. McCarthy | T. Wong | T. Wong

[1]  Jay R. Desai,et al.  Racial/Ethnic Disparities in the Prevalence of Diabetes and Prediabetes by BMI: Patient Outcomes Research To Advance Learning (PORTAL) Multisite Cohort of Adults in the U.S. , 2019, Diabetes Care.

[2]  M. Kanai,et al.  Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population , 2019, Nature Genetics.

[3]  Y. J. Kim,et al.  The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits , 2019, Scientific Reports.

[4]  Fei Liu,et al.  miR-17-92 functions as an oncogene and modulates NF-κB signaling by targeting TRAF3 in MGC-803 human gastric cancer cells. , 2018, International journal of oncology.

[5]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[6]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[7]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[8]  J. Zierath,et al.  AMPK activation negatively regulates GDAP1, which influences metabolic processes and circadian gene expression in skeletal muscle , 2018, Molecular metabolism.

[9]  Marcelo P. Segura-Lepe,et al.  PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES RELATED TO LIPID HOMEOSTASIS CONTRIBUTING TO BODY FAT DISTRIBUTION , 2018, Nature Genetics.

[10]  Ayellet V. Segrè,et al.  Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation , 2018, Nature Genetics.

[11]  Y. J. Kim,et al.  Nonsynonymous Variants in PAX4 and GLP1R Are Associated With Type 2 Diabetes in an East Asian Population , 2018, Diabetes.

[12]  Kazuhiko Yamamoto,et al.  Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese , 2018, Nature Communications.

[13]  Cassandra N. Spracklen,et al.  Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey , 2018, PLoS genetics.

[14]  P. Visscher,et al.  Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry , 2018, bioRxiv.

[15]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[16]  Jian Li,et al.  MiR-19a mediates gluconeogenesis by targeting PTEN in hepatocytes. , 2017, Molecular medicine reports.

[17]  Cassandra N. Spracklen,et al.  Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. , 2018, Human molecular genetics.

[18]  Marcelo P. Segura-Lepe,et al.  Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity , 2017, Nature Genetics.

[19]  Kyle J. Gaulton,et al.  Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci , 2017, bioRxiv.

[20]  Associations between aldehyde dehydrogenase 2 (ALDH2) rs671 genetic polymorphisms, lifestyles and hypertension risk in Chinese Han people , 2017, Scientific Reports.

[21]  M. Kanai,et al.  Genome-wide association study identifies 112 new loci for body mass index in the Japanese population , 2017, Nature Genetics.

[22]  Christian Gieger,et al.  Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis , 2017, PLoS Medicine.

[23]  B. Han,et al.  Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium , 2017, International journal of epidemiology.

[24]  Tanya M. Teslovich,et al.  An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans , 2017, Diabetes.

[25]  Aiqing He,et al.  Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. , 2017, American journal of human genetics.

[26]  Sanghoon Moon,et al.  Association analyses of East Asian individuals and trans‐ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels , 2017, Human molecular genetics.

[27]  Laura J. Scott,et al.  Genetic regulatory signatures underlying islet gene expression and type 2 diabetes , 2017, Proceedings of the National Academy of Sciences.

[28]  Andrew P Morris,et al.  Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes , 2016, European Journal of Human Genetics.

[29]  Bok-Ghee Han,et al.  Cohort Profile Cohort Profile : The Korean Genome and Epidemiology Study ( KoGES ) Consortium , 2017 .

[30]  H. Tian,et al.  MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation , 2016, Molecular and Cellular Endocrinology.

[31]  C. Wright,et al.  Transcriptional Maintenance of Pancreatic Acinar Identity, Differentiation, and Homeostasis by PTF1A , 2016, Molecular and Cellular Biology.

[32]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[33]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[34]  Laura J. Scott,et al.  The genetic regulatory signature of type 2 diabetes in human skeletal muscle , 2016, Nature Communications.

[35]  V. Sorrentino,et al.  A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene , 2016, Scientific Reports.

[36]  Seung-Hwan Lee,et al.  Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells , 2016, Scientific Reports.

[37]  D. Yin,et al.  Downregulation of Long Noncoding RNA Meg3 Affects Insulin Synthesis and Secretion in Mouse Pancreatic Beta Cells , 2016, Journal of cellular physiology.

[38]  Sanghoon Moon,et al.  Evaluation of pleiotropic effects among common genetic loci identified for cardio-metabolic traits in a Korean population , 2016, Cardiovascular Diabetology.

[39]  D. Absher,et al.  Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease , 2016, Nature Communications.

[40]  Y. J. Kim,et al.  Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes , 2016, Nature Communications.

[41]  E. Tai,et al.  Genome-wide association studies in East Asians identify new loci for waist-hip ratio and waist circumference , 2016, Scientific Reports.

[42]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[43]  Mark I. McCarthy,et al.  Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors , 2015, PLoS genetics.

[44]  L. Yin,et al.  Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity , 2015, Molecular metabolism.

[45]  M. Cáceres,et al.  Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript , 2015, PLoS genetics.

[46]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[47]  H. Sul,et al.  Overexpression of Pref-1 in pancreatic islet β-cells in mice causes hyperinsulinemia with increased islet mass and insulin secretion. , 2015, Biochemical and biophysical research communications.

[48]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[49]  Manolis Kellis,et al.  Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers , 2015, Nature Genetics.

[50]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[51]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[52]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[53]  H. Hendriks,et al.  The Effect of Alcohol Consumption on Insulin Sensitivity and Glycemic Status: A Systematic Review and Meta-analysis of Intervention Studies , 2015, Diabetes Care.

[54]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[55]  Y. J. Kim,et al.  Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. , 2014, Human molecular genetics.

[56]  Kyle J. Gaulton,et al.  Identification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus , 2014, PLoS genetics.

[57]  Mark I. McCarthy,et al.  A Central Role for GRB10 in Regulation of Islet Function in Man , 2014, PLoS genetics.

[58]  W. Sheu,et al.  A meta-analysis of genome-wide association studies for adiponectin levels in East Asians identifies a novel locus near WDR11-FGFR2. , 2014, Human molecular genetics.

[59]  Jonathan Schug,et al.  Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. , 2014, Cell metabolism.

[60]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[61]  M. Sander,et al.  Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. , 2013, Cell reports.

[62]  Michael Boehnke,et al.  Recommended Joint and Meta‐Analysis Strategies for Case‐Control Association Testing of Single Low‐Count Variants , 2013, Genetic epidemiology.

[63]  M. Laakso,et al.  The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. , 2013, Cell metabolism.

[64]  J. Chan,et al.  Annals of the New York Academy of Sciences Type 2 Diabetes in East Asians: Similarities and Differences with Populations in Europe and the United States , 2022 .

[65]  Kyle J. Gaulton,et al.  The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis , 2013, PloS one.

[66]  J. Carr,et al.  Associations of body mass index and insulin resistance with leptin, adiponectin, and the leptin-to-adiponectin ratio across ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). , 2012, Annals of epidemiology.

[67]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[68]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[69]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[70]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[71]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[72]  Wei Lu,et al.  Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.

[73]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[74]  Taesung Park,et al.  Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits , 2011, Nature Genetics.

[75]  Inês Barroso,et al.  Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes , 2011, Diabetes.

[76]  Christian Gieger,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[77]  N. Mehta Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. , 2011, Circulation. Cardiovascular genetics.

[78]  Tien Yin Wong,et al.  Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians , 2011, Nature Genetics.

[79]  Thomas W. Mühleisen,et al.  Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease , 2011, Nature Genetics.

[80]  T. Ogihara,et al.  Confirmation of ALDH2 as a Major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. , 2011, Circulation Journal.

[81]  Andrew P Morris,et al.  Meta-analysis of sex-specific genome-wide association studies , 2010, Genetic epidemiology.

[82]  Christian Gieger,et al.  Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways , 2010, Diabetes.

[83]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[84]  Alex Doney,et al.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.

[85]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[86]  Yun Zhang,et al.  ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients , 2010, Hypertension Research.

[87]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[88]  P Zimmet,et al.  Ethnic comparisons of the cross‐sectional relationships between measures of body size with diabetes and hypertension , 2008, Obesity reviews : an official journal of the International Association for the Study of Obesity.

[89]  M. Drent,et al.  The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review , 2007, Obesity reviews : an official journal of the International Association for the Study of Obesity.

[90]  M. Sander,et al.  NKX6 transcription factor activity is required for α- andβ -cell development in the pancreas , 2005 .

[91]  Michael Stumvoll,et al.  Type 2 diabetes: principles of pathogenesis and therapy , 2005, The Lancet.

[92]  M. Sander,et al.  NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. , 2005, Development.

[93]  H. Watada,et al.  The transcriptional repressor Nkx6.1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during pancreatic beta-cell differentiation: evidence for feedback activation of the nkx6.1 gene by Nkx6.1. , 2004, Molecular endocrinology.

[94]  H. Sul,et al.  Mice Lacking Paternally Expressed Pref-1/Dlk1 Display Growth Retardation and Accelerated Adiposity , 2002, Molecular and Cellular Biology.

[95]  M. Prentki,et al.  Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. , 2000, Diabetes.

[96]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[97]  J. Miyazaki,et al.  Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. , 1990, Endocrinology.