Symmetry in Integer Linear Programming
暂无分享,去创建一个
[1] A. Nijenhuis. Combinatorial algorithms , 1975 .
[2] François Margot,et al. Small covering designs by branch-and-cut , 2003, Math. Program..
[3] Jeff T. Linderoth,et al. Orbital Branching , 2007, IPCO.
[4] Patric R. J. Östergård,et al. A New Lower Bound for the Football Pool Problem for Six Matches , 2002, J. Comb. Theory, Ser. A.
[5] G. Nemhauser,et al. Integer Programming , 2020 .
[6] Eugene M. Luks,et al. Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.
[7] Charles J. Colbourn,et al. Cataloguing the graphs on 10 vertices , 1985, J. Graph Theory.
[8] Rainer Schrader,et al. The permutahedron ofN-sparse posets , 1996, Math. Program..
[9] Ian P. Gent,et al. Groupoids and Conditional Symmetry , 2007, CP.
[10] Komei Fukuda,et al. On the Face Lattice of the Metric Polytope , 2002, JCDCG.
[11] Marc E. Pfetsch,et al. Orbitopal Fixing , 2007, IPCO.
[12] Michael A. Trick,et al. Cliques and clustering: A combinatorial approach , 1998, Oper. Res. Lett..
[13] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[14] Gérard D. Cohen,et al. Linear Codes with Covering Radius and Codimension , 2001 .
[15] Giovanni Rinaldi,et al. A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..
[16] Leo Liberti,et al. Automatic Generation of Symmetry-Breaking Constraints , 2008, COCOA.
[17] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[18] Kurt M. Anstreicher,et al. Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..
[19] P. Cameron,et al. PERMUTATION GROUPS , 2019, Group Theory for Physicists.
[20] Pamela H. Vance,et al. Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..
[21] Jean-François Puget. Symmetry Breaking Using Stabilizers , 2003, CP.
[22] J. Leon. On an algorithm for finding a base and a strong generating set for a group given by generating permutations , 1980 .
[23] Pablo A. Rey,et al. Eliminating redundant solutions of some symmetric combinatorial integer programs , 2004, Electron. Notes Discret. Math..
[24] Igor L. Markov,et al. Solving difficult instances of Boolean satisfiability in the presence of symmetry , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[25] Sally C. Brailsford,et al. The Progressive Party Problem: Integer Linear Programming and Constraint Programming Compared , 1995, CP.
[26] V. Kaibel,et al. Packing and partitioning orbitopes , 2006, math/0603678.
[27] E. Balas. A Linear Characterization of Permutation Vectors. , 1975 .
[28] M. Bazaraa,et al. A branch-and-bound-based heuristic for solving the quadratic assignment problem , 1983 .
[29] Igor L. Markov,et al. Automatically Exploiting Symmetries in Constraint Programming , 2004, CSCLP.
[30] Ian P. Gent,et al. Symmetry Breaking in Constraint Programming , 2000, ECAI.
[31] Michael A. Trick,et al. A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..
[32] Paul Walton Purdom,et al. Backtrack Searching in the Presence of Symmetry , 1988, Nord. J. Comput..
[33] Jean-François Puget. Symmetry Breaking Revisited , 2002, CP.
[34] P. Östergård,et al. An updated table of binary/ternary mixed covering codes , 2004 .
[35] László Babai,et al. Fast management of permutation groups , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[36] C. T. Benson,et al. Finite Reflection Groups , 1985 .
[37] G. Nemhauser,et al. BRANCH-AND-PRICE: GENERATION FOR SOLVING HUGE INTEGER PROGRAMS , 1998 .
[38] Eric J. Friedman,et al. Fundamental Domains for Integer Programs with Symmetries , 2007, COCOA.
[39] Hanif D. Sherali,et al. Improving Discrete Model Representations via Symmetry Considerations , 2001, Manag. Sci..
[40] Jean-François Puget,et al. Automatic Detection of Variable and Value Symmetries , 2005, CP.
[41] Brendan D. McKay,et al. Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.
[42] James M. Crawford,et al. Symmetry-Breaking Predicates for Search Problems , 1996, KR.
[43] François Margot,et al. Exploiting orbits in symmetric ILP , 2003, Math. Program..
[44] R. Read. Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .
[45] François Margot,et al. Symmetric ILP: Coloring and small integers , 2007, Discret. Optim..
[46] Isabel Méndez-Díaz,et al. A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..
[47] Steve Linton,et al. Generic SBDD Using Computational Group Theory , 2003, CP.
[48] Gérard D. Cohen,et al. Covering Codes , 2005, North-Holland mathematical library.
[49] Manoel Campêlo,et al. Um algoritmo de planos-de-corte para o número cromático fracionário de um grafo , 2009 .
[50] Michael Jünger,et al. Branch-and-Cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS , 2000, Computational Combinatorial Optimization.
[51] Jacques Desrosiers,et al. The Pickup and Delivery Problem with Time Windows , 1989 .
[52] Javier Marenco,et al. The Football Pool Polytope , 2008, Electron. Notes Discret. Math..
[53] Donald L. Kreher,et al. Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.
[54] Jean-François Puget,et al. On the Satisfiability of Symmetrical Constrained Satisfaction Problems , 1993, ISMIS.
[55] Christoph M. Hoffmann,et al. Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.
[56] Á. Seress. Nearly Linear Time Algorithms for Permutation Groups: An Interplay Between Theory and Practice , 1998 .
[57] Eugene L. Lawler,et al. Traveling Salesman Problem , 2016 .
[58] J. Puget. A comparison of SBDS and Dynamic Lex Constraints , 2022 .
[59] Frank Plastria,et al. Formulating logical implications in combinatorial optimisation , 2002, Eur. J. Oper. Res..
[60] P. Flener,et al. Symmetry in matrix models , 2001 .
[61] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.
[62] R. Stanton,et al. A computer search for B-coverings , 1980 .
[63] J. Rotman. An Introduction to the Theory of Groups , 1965 .
[64] Jeff T. Linderoth,et al. Improving Bounds on the Football Pool Problem by Integer Programming and High-Throughput Computing , 2009, INFORMS J. Comput..
[65] László Babai,et al. Fast Management of Permutation Groups I , 1997, SIAM J. Comput..
[66] P. M. Neumann. PERMUTATION GROUP ALGORITHMS (Cambridge Tracts in Mathematics 152) By ÁKOS SERESS: 264 pp., £47.50 (US$65.00), ISBN 0-521-66103-X (Cambridge University Press, 2003) , 2004 .
[67] Gregory Butler,et al. A General Backtrack Algorithm for the Isomorphism Problem of Combinatorial Objects , 1985, J. Symb. Comput..
[68] Pascal Van Hentenryck,et al. Dynamic structural symmetry breaking for constraint satisfaction problems , 2009, Constraints.
[69] Martin Desrochers,et al. A Column Generation Approach to the Urban Transit Crew Scheduling Problem , 1987, Transp. Sci..
[70] Warwick Harvey,et al. Groups and Constraints: Symmetry Breaking during Search , 2002, CP.
[71] Zeger Degraeve,et al. A note on a symmetrical set covering problem: The lottery problem , 2008, Eur. J. Oper. Res..
[72] Igor L. Markov,et al. Breaking instance-independent symmetries in exact graph coloring , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.
[73] G. Jones. PERMUTATION GROUPS (London Mathematical Society Student Texts 45) , 2000 .
[74] Hanif D. Sherali,et al. Enhanced Model Formulations for Optimal Facility Layout , 2003, Oper. Res..
[75] George L. Nemhauser,et al. Solving binary cutting stock problems by column generation and branch-and-bound , 1994, Comput. Optim. Appl..
[76] Martin Grötschel,et al. Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..
[77] Michael Jünger,et al. Computational Combinatorial Optimization , 2001, Lecture Notes in Computer Science.
[78] R. Steinberg. FINITE REFLECTION GROUPS , 1959 .
[79] Gerhard Reinelt,et al. Decomposition and Parallelization Techniques for Enumerating the Facets of Combinatorial Polytopes , 2001, Int. J. Comput. Geom. Appl..
[80] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[81] Barbara M. Smith,et al. Comparison of Symmetry Breaking Methods in Constraint Programming , 2005 .
[82] Steve Linton,et al. Conditional Symmetry Breaking , 2005, CP.
[83] François Margot,et al. A catalog of minimally nonideal matrices , 1998, Math. Methods Oper. Res..
[84] Malte Helmert,et al. The Fast Downward Planning System , 2006, J. Artif. Intell. Res..
[85] Barbara M. Smith,et al. Reducing Symmetry in a Combinatorial Design Problem , 2001 .
[86] John J. Cannon,et al. Computing in permutation and matrix groups. I. Normal closure, commutator subgroups, series , 1982 .
[87] Hanif D. Sherali,et al. Enhanced Model Representations for an Intra-Ring Synchronous Optical Network Design Problem Allowing Demand Splitting , 2000, INFORMS J. Comput..
[88] Peter J. Cameron,et al. Permutation Groups: Frontmatter , 1999 .
[89] Michela Milano,et al. Global Cut Framework for Removing Symmetries , 2001, CP.
[90] Meinolf Sellmann,et al. Symmetry Breaking , 2001, CP.
[91] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[92] Christian Waibel. Pruning by Isomorphism in Branch-and-Cut , 2008 .
[93] A. Schrijver,et al. The Traveling Salesman Problem , 2011 .
[94] Igor L. Markov,et al. Exploiting structure in symmetry detection for CNF , 2004, Proceedings. 41st Design Automation Conference, 2004..
[95] E. O'Brien,et al. Handbook of Computational Group Theory , 2005 .
[96] Michael Jünger,et al. Linear optimization over permutation groups , 2005, Discret. Optim..
[97] Mark Jerrum. A Compact Representation for Permutation Groups , 1982, FOCS.
[98] Masanori Sato,et al. On the Skeleton of the Metric Polytope , 2000, JCDCG.
[99] Yuri Frota,et al. Cliques, holes and the vertex coloring polytope , 2004, Inf. Process. Lett..
[100] Patric R. J. Östergård,et al. On the size of optimal binary codes of length 9 and covering radius 1 , 2001, IEEE Trans. Inf. Theory.
[101] Toby Walsh,et al. Breaking Row and Column Symmetries in Matrix Models , 2002, CP.
[102] Gregory Butler,et al. Fundamental Algorithms for Permutation Groups , 1991, Lecture Notes in Computer Science.
[103] M. Yannakakis. Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.
[104] P. Östergård,et al. Football Pools A Game for Mathematicians , 1995 .
[105] George W. Polites,et al. An introduction to the theory of groups , 1968 .
[106] Victor A. Campos,et al. On the asymmetric representatives formulation for the vertex coloring problem , 2005, Discret. Appl. Math..
[107] Sungsoo Park,et al. A polyhedral approach to edge coloring , 1991, Oper. Res. Lett..
[108] Catherine Roucairol,et al. A New Exact Algorithm for the Solution of Quadratic Assignment Problems , 1994, Discret. Appl. Math..
[109] Michael Jünger,et al. Detecting symmetries by branch & cut , 2001, Math. Program..
[110] Ian P. Gent,et al. Symmetry in Constraint Programming , 2006, Handbook of Constraint Programming.
[111] D. Bulutoglu,et al. Classification of Orthogonal Arrays by Integer Programming , 2008 .
[112] Jeff T. Linderoth,et al. Constraint Orbital Branching , 2008, IPCO.
[113] William J. Cook,et al. The Traveling Salesman Problem: A Computational Study , 2007 .
[114] Zeger Degraeve,et al. Alternative formulations for a layout problem in the fashion industry , 2002, Eur. J. Oper. Res..
[115] Gene Cooperman,et al. A random base change algorithm for permutation groups , 1990, ISSAC '90.
[116] G. Butler. Computing in Permutation and Ma-trix Groups II: Backtrack Algorithm , 1982 .
[117] George L. Nemhauser,et al. Airline Crew Scheduling: A New Formulation and Decomposition Algorithm , 1997, Oper. Res..
[118] V. Rich. Personal communication , 1989, Nature.
[119] B. McKay. nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .
[120] Martin W. P. Savelsbergh,et al. Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..
[121] Jeff T. Linderoth,et al. Improving Bounds on the Football Pool Problem via Symmetry Reduction and High-Throughput Computing , 2007 .
[122] David L. Applegate,et al. The traveling salesman problem , 2006 .