Symmetry in Integer Linear Programming

An integer linear program (ILP) is symmetric if its variables can be permuted without changing the structure of the problem. Areas where symmetric ILPs arise range from applied settings (scheduling on identical machines), to combinatorics (code construction), and to statistics (statistical designs construction). Relatively small symmetric ILPs are extremely difficult to solve using branch-and-cut codes oblivious to the symmetry in the problem. This paper reviews techniques developed to take advantage of the symmetry in an ILP during its solution. It also surveys related topics, such as symmetry detection, polyhedral studies of symmetric ILPs, and enumeration of all non isomorphic optimal solutions.

[1]  A. Nijenhuis Combinatorial algorithms , 1975 .

[2]  François Margot,et al.  Small covering designs by branch-and-cut , 2003, Math. Program..

[3]  Jeff T. Linderoth,et al.  Orbital Branching , 2007, IPCO.

[4]  Patric R. J. Östergård,et al.  A New Lower Bound for the Football Pool Problem for Six Matches , 2002, J. Comb. Theory, Ser. A.

[5]  G. Nemhauser,et al.  Integer Programming , 2020 .

[6]  Eugene M. Luks,et al.  Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.

[7]  Charles J. Colbourn,et al.  Cataloguing the graphs on 10 vertices , 1985, J. Graph Theory.

[8]  Rainer Schrader,et al.  The permutahedron ofN-sparse posets , 1996, Math. Program..

[9]  Ian P. Gent,et al.  Groupoids and Conditional Symmetry , 2007, CP.

[10]  Komei Fukuda,et al.  On the Face Lattice of the Metric Polytope , 2002, JCDCG.

[11]  Marc E. Pfetsch,et al.  Orbitopal Fixing , 2007, IPCO.

[12]  Michael A. Trick,et al.  Cliques and clustering: A combinatorial approach , 1998, Oper. Res. Lett..

[13]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[14]  Gérard D. Cohen,et al.  Linear Codes with Covering Radius and Codimension , 2001 .

[15]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[16]  Leo Liberti,et al.  Automatic Generation of Symmetry-Breaking Constraints , 2008, COCOA.

[17]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[18]  Kurt M. Anstreicher,et al.  Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..

[19]  P. Cameron,et al.  PERMUTATION GROUPS , 2019, Group Theory for Physicists.

[20]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[21]  Jean-François Puget Symmetry Breaking Using Stabilizers , 2003, CP.

[22]  J. Leon On an algorithm for finding a base and a strong generating set for a group given by generating permutations , 1980 .

[23]  Pablo A. Rey,et al.  Eliminating redundant solutions of some symmetric combinatorial integer programs , 2004, Electron. Notes Discret. Math..

[24]  Igor L. Markov,et al.  Solving difficult instances of Boolean satisfiability in the presence of symmetry , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  Sally C. Brailsford,et al.  The Progressive Party Problem: Integer Linear Programming and Constraint Programming Compared , 1995, CP.

[26]  V. Kaibel,et al.  Packing and partitioning orbitopes , 2006, math/0603678.

[27]  E. Balas A Linear Characterization of Permutation Vectors. , 1975 .

[28]  M. Bazaraa,et al.  A branch-and-bound-based heuristic for solving the quadratic assignment problem , 1983 .

[29]  Igor L. Markov,et al.  Automatically Exploiting Symmetries in Constraint Programming , 2004, CSCLP.

[30]  Ian P. Gent,et al.  Symmetry Breaking in Constraint Programming , 2000, ECAI.

[31]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[32]  Paul Walton Purdom,et al.  Backtrack Searching in the Presence of Symmetry , 1988, Nord. J. Comput..

[33]  Jean-François Puget Symmetry Breaking Revisited , 2002, CP.

[34]  P. Östergård,et al.  An updated table of binary/ternary mixed covering codes , 2004 .

[35]  László Babai,et al.  Fast management of permutation groups , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[36]  C. T. Benson,et al.  Finite Reflection Groups , 1985 .

[37]  G. Nemhauser,et al.  BRANCH-AND-PRICE: GENERATION FOR SOLVING HUGE INTEGER PROGRAMS , 1998 .

[38]  Eric J. Friedman,et al.  Fundamental Domains for Integer Programs with Symmetries , 2007, COCOA.

[39]  Hanif D. Sherali,et al.  Improving Discrete Model Representations via Symmetry Considerations , 2001, Manag. Sci..

[40]  Jean-François Puget,et al.  Automatic Detection of Variable and Value Symmetries , 2005, CP.

[41]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[42]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[43]  François Margot,et al.  Exploiting orbits in symmetric ILP , 2003, Math. Program..

[44]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[45]  François Margot,et al.  Symmetric ILP: Coloring and small integers , 2007, Discret. Optim..

[46]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[47]  Steve Linton,et al.  Generic SBDD Using Computational Group Theory , 2003, CP.

[48]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[49]  Manoel Campêlo,et al.  Um algoritmo de planos-de-corte para o número cromático fracionário de um grafo , 2009 .

[50]  Michael Jünger,et al.  Branch-and-Cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS , 2000, Computational Combinatorial Optimization.

[51]  Jacques Desrosiers,et al.  The Pickup and Delivery Problem with Time Windows , 1989 .

[52]  Javier Marenco,et al.  The Football Pool Polytope , 2008, Electron. Notes Discret. Math..

[53]  Donald L. Kreher,et al.  Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.

[54]  Jean-François Puget,et al.  On the Satisfiability of Symmetrical Constrained Satisfaction Problems , 1993, ISMIS.

[55]  Christoph M. Hoffmann,et al.  Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.

[56]  Á. Seress Nearly Linear Time Algorithms for Permutation Groups: An Interplay Between Theory and Practice , 1998 .

[57]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[58]  J. Puget A comparison of SBDS and Dynamic Lex Constraints , 2022 .

[59]  Frank Plastria,et al.  Formulating logical implications in combinatorial optimisation , 2002, Eur. J. Oper. Res..

[60]  P. Flener,et al.  Symmetry in matrix models , 2001 .

[61]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[62]  R. Stanton,et al.  A computer search for B-coverings , 1980 .

[63]  J. Rotman An Introduction to the Theory of Groups , 1965 .

[64]  Jeff T. Linderoth,et al.  Improving Bounds on the Football Pool Problem by Integer Programming and High-Throughput Computing , 2009, INFORMS J. Comput..

[65]  László Babai,et al.  Fast Management of Permutation Groups I , 1997, SIAM J. Comput..

[66]  P. M. Neumann PERMUTATION GROUP ALGORITHMS (Cambridge Tracts in Mathematics 152) By ÁKOS SERESS: 264 pp., £47.50 (US$65.00), ISBN 0-521-66103-X (Cambridge University Press, 2003) , 2004 .

[67]  Gregory Butler,et al.  A General Backtrack Algorithm for the Isomorphism Problem of Combinatorial Objects , 1985, J. Symb. Comput..

[68]  Pascal Van Hentenryck,et al.  Dynamic structural symmetry breaking for constraint satisfaction problems , 2009, Constraints.

[69]  Martin Desrochers,et al.  A Column Generation Approach to the Urban Transit Crew Scheduling Problem , 1987, Transp. Sci..

[70]  Warwick Harvey,et al.  Groups and Constraints: Symmetry Breaking during Search , 2002, CP.

[71]  Zeger Degraeve,et al.  A note on a symmetrical set covering problem: The lottery problem , 2008, Eur. J. Oper. Res..

[72]  Igor L. Markov,et al.  Breaking instance-independent symmetries in exact graph coloring , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[73]  G. Jones PERMUTATION GROUPS (London Mathematical Society Student Texts 45) , 2000 .

[74]  Hanif D. Sherali,et al.  Enhanced Model Formulations for Optimal Facility Layout , 2003, Oper. Res..

[75]  George L. Nemhauser,et al.  Solving binary cutting stock problems by column generation and branch-and-bound , 1994, Comput. Optim. Appl..

[76]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[77]  Michael Jünger,et al.  Computational Combinatorial Optimization , 2001, Lecture Notes in Computer Science.

[78]  R. Steinberg FINITE REFLECTION GROUPS , 1959 .

[79]  Gerhard Reinelt,et al.  Decomposition and Parallelization Techniques for Enumerating the Facets of Combinatorial Polytopes , 2001, Int. J. Comput. Geom. Appl..

[80]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[81]  Barbara M. Smith,et al.  Comparison of Symmetry Breaking Methods in Constraint Programming , 2005 .

[82]  Steve Linton,et al.  Conditional Symmetry Breaking , 2005, CP.

[83]  François Margot,et al.  A catalog of minimally nonideal matrices , 1998, Math. Methods Oper. Res..

[84]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[85]  Barbara M. Smith,et al.  Reducing Symmetry in a Combinatorial Design Problem , 2001 .

[86]  John J. Cannon,et al.  Computing in permutation and matrix groups. I. Normal closure, commutator subgroups, series , 1982 .

[87]  Hanif D. Sherali,et al.  Enhanced Model Representations for an Intra-Ring Synchronous Optical Network Design Problem Allowing Demand Splitting , 2000, INFORMS J. Comput..

[88]  Peter J. Cameron,et al.  Permutation Groups: Frontmatter , 1999 .

[89]  Michela Milano,et al.  Global Cut Framework for Removing Symmetries , 2001, CP.

[90]  Meinolf Sellmann,et al.  Symmetry Breaking , 2001, CP.

[91]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[92]  Christian Waibel Pruning by Isomorphism in Branch-and-Cut , 2008 .

[93]  A. Schrijver,et al.  The Traveling Salesman Problem , 2011 .

[94]  Igor L. Markov,et al.  Exploiting structure in symmetry detection for CNF , 2004, Proceedings. 41st Design Automation Conference, 2004..

[95]  E. O'Brien,et al.  Handbook of Computational Group Theory , 2005 .

[96]  Michael Jünger,et al.  Linear optimization over permutation groups , 2005, Discret. Optim..

[97]  Mark Jerrum A Compact Representation for Permutation Groups , 1982, FOCS.

[98]  Masanori Sato,et al.  On the Skeleton of the Metric Polytope , 2000, JCDCG.

[99]  Yuri Frota,et al.  Cliques, holes and the vertex coloring polytope , 2004, Inf. Process. Lett..

[100]  Patric R. J. Östergård,et al.  On the size of optimal binary codes of length 9 and covering radius 1 , 2001, IEEE Trans. Inf. Theory.

[101]  Toby Walsh,et al.  Breaking Row and Column Symmetries in Matrix Models , 2002, CP.

[102]  Gregory Butler,et al.  Fundamental Algorithms for Permutation Groups , 1991, Lecture Notes in Computer Science.

[103]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[104]  P. Östergård,et al.  Football Pools A Game for Mathematicians , 1995 .

[105]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[106]  Victor A. Campos,et al.  On the asymmetric representatives formulation for the vertex coloring problem , 2005, Discret. Appl. Math..

[107]  Sungsoo Park,et al.  A polyhedral approach to edge coloring , 1991, Oper. Res. Lett..

[108]  Catherine Roucairol,et al.  A New Exact Algorithm for the Solution of Quadratic Assignment Problems , 1994, Discret. Appl. Math..

[109]  Michael Jünger,et al.  Detecting symmetries by branch & cut , 2001, Math. Program..

[110]  Ian P. Gent,et al.  Symmetry in Constraint Programming , 2006, Handbook of Constraint Programming.

[111]  D. Bulutoglu,et al.  Classification of Orthogonal Arrays by Integer Programming , 2008 .

[112]  Jeff T. Linderoth,et al.  Constraint Orbital Branching , 2008, IPCO.

[113]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[114]  Zeger Degraeve,et al.  Alternative formulations for a layout problem in the fashion industry , 2002, Eur. J. Oper. Res..

[115]  Gene Cooperman,et al.  A random base change algorithm for permutation groups , 1990, ISSAC '90.

[116]  G. Butler Computing in Permutation and Ma-trix Groups II: Backtrack Algorithm , 1982 .

[117]  George L. Nemhauser,et al.  Airline Crew Scheduling: A New Formulation and Decomposition Algorithm , 1997, Oper. Res..

[118]  V. Rich Personal communication , 1989, Nature.

[119]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[120]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[121]  Jeff T. Linderoth,et al.  Improving Bounds on the Football Pool Problem via Symmetry Reduction and High-Throughput Computing , 2007 .

[122]  David L. Applegate,et al.  The traveling salesman problem , 2006 .