Using distributed systems in real-time control of autonomous vehicles

In this paper distributed architectures for autonomous vehicles are addressed, with a special emphasis on its real-time control requirements. The interconnection of the distributed intelligent subsystems is a key factor in the overall performance of the system. To better understand the interconnection requirements, the main techniques and modules of a global navigation system are described. A special focus on fieldbuses properties and major characteristics is made in order to point out some potentialities, which make them attractive in autonomous vehicles real-time applications, either in terms of reliability as in terms of real-time restrictions.

[1]  Thierry Fraichard,et al.  Multi-sensor data fusion using Bayesian programming : an automotive application , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  José Alberto Fonseca,et al.  The FTT-CAN Protocol for Flexibility in Safety-Critical Systems , 2002, IEEE Micro.

[3]  Kang G. Shin,et al.  Achieving real-time communication over Ethernet with adaptive traffic smoothing , 2000, Proceedings Sixth IEEE Real-Time Technology and Applications Symposium. RTAS 2000.

[4]  Randall D. Beer,et al.  Spatial learning for navigation in dynamic environments , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Max Q.-H. Meng,et al.  Real-time collision-free path planning and tracking control of a nonholonomic mobile robot using a biologically inspired approach , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Spyros G. Tzafestas Research on autonomous robotic wheelchairs in Europe [Guest Editorial] , 2001, IEEE Robotics Autom. Mag..

[7]  Urbano Nunes,et al.  A Wheelchair Steered through Voice Commands and Assisted by a Reactive Fuzzy-Logic Controller , 2002, J. Intell. Robotic Syst..

[8]  Giorgio Buttazzo,et al.  Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications , 1997 .

[9]  Paolo Gai,et al.  The FTT-ethernet protocol: merging flexibility, timeliness and efficiency , 2002, Proceedings 14th Euromicro Conference on Real-Time Systems. Euromicro RTS 2002.

[10]  Stergios I. Roumeliotis,et al.  Stochastic cloning: a generalized framework for processing relative state measurements , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[11]  Ana Pont,et al.  A CAN Architecture for an Intelligent Mobile Robot , 1997 .

[12]  Seung Ho Hong,et al.  Scheduling algorithm of data sampling times in the integrated communication and control systems , 1995, IEEE Trans. Control. Syst. Technol..

[13]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[14]  P. Pomiers CEL-based integration policy for critical multi-layered applications , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[15]  José Alberto Fonseca,et al.  The FTT-CAN protocol: why and how , 2002, IEEE Trans. Ind. Electron..

[16]  Tom Duckett,et al.  Mobile robot self-localisation and measurement of performance in middle-scale environments , 1998, Robotics Auton. Syst..

[17]  A.T. de Almeida,et al.  RobChair-a powered wheelchair using a behaviour-based navigation , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).

[18]  P. Koopman Critical embedded automotive networks , 2002, IEEE Micro.

[19]  António E. Ruano,et al.  Reactive local navigation , 2002, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02.

[20]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[21]  A. Stothert,et al.  Effect of Timing Jitter on Distributed Computer Control System Performance , 1998 .

[22]  Stefan Poledna,et al.  Time-Triggered Architecture: A Consistent Computing Platform , 2002, IEEE Micro.

[23]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[24]  Fumio Miyazaki,et al.  A stable tracking control method for a non-holonomic mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[25]  José Alberto Fonseca,et al.  Systems Modelling and Identification in CAN based Distributed Control Systems , 2000 .

[26]  Paolo Fiorini,et al.  A robotics wheelchair for crowded public environment , 2001, IEEE Robotics Autom. Mag..

[27]  Holger Zeltwanger,et al.  Time-Triggered Communication on CAN , 2002 .

[28]  Jay A. Farrell,et al.  Real-time differential carrier phase GPS-aided INS , 2000, IEEE Trans. Control. Syst. Technol..

[29]  Yeshaiahu Fainman,et al.  Estimation of the absolute position of mobile systems by an optoelectronic processor , 1992, IEEE Trans. Syst. Man Cybern..

[30]  T. Führer,et al.  Time Triggered Communication on CAN ( Time Triggered CAN-TTCAN ) , 2000 .

[31]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Lino Marques,et al.  Sensors for mobile robot navigation , 1998 .

[33]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[34]  Vijay Kumar,et al.  Control of Mechanical Systems With Rolling Constraints , 1994, Int. J. Robotics Res..

[35]  Maher Khatib,et al.  Sensor-Based Motion Control for Mobile Robots , 1996 .

[36]  Spyros G. Tzafestas,et al.  Research on Autonomous Robotic Wheelchairs in Europe , 2001 .

[37]  Ernesto Costa,et al.  Jitter minimization with genetic algorithms , 2000, 2000 IEEE International Workshop on Factory Communication Systems. Proceedings (Cat. No.00TH8531).

[38]  Javier Minguez,et al.  Nearness diagram navigation (ND): a new real time collision avoidance approach , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[39]  Jürgen Jasperneite,et al.  Switched Ethernet for factory communication , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[40]  M. Wahl,et al.  A CAN application layer for an experimental real time obstacle detection study , 2000, ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493).

[41]  Hermann Kopetz,et al.  Event-Triggered Versus Time-Triggered Real-Time Systems , 1991, Operating Systems of the 90s and Beyond.

[42]  Paolo Fiorini,et al.  A Robotic Wheelchair for Crowded Public Environments MAid Combines Narrow- and Wide-Area Navigation Behaviors for Traversing Varying Environments While Retaining User Independence and Preventing Fatigue , 2001 .

[43]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[44]  Andy J. Wellings,et al.  Analysing real-time communications: controller area network (CAN) , 1994, 1994 Proceedings Real-Time Systems Symposium.

[45]  Gabriel Pires,et al.  A BEHAVIOR BASED FUZZY CONTROL ARCHITECTURE FOR PATH TRACKING AND OBSTACLE AVOIDANCE , 2002 .

[46]  Ye-Qiong Song,et al.  Design of Reliable Real-Time Applications Distributed Over CAN (Controller Area Network) , 1997 .