Modeling submerged hollow-fiber membrane filtration for wastewater treatment

A model for submerged outside-in hollow-fiber MF/UF filtration for wastewater treatment is presented. The model aims at integrating the major influence factors on medium scale of granularity. In particular, the model covers the geometry of the system, the hydrodynamics of the feed and of the permeate flow, and the filtration resistance. The filtration resistance model considers membrane resistance, pore blocking, cake layer formation, polydispersed particles, biofilm formation, and concentration polarization on high levels of detail. The model is thoroughly analyzed in simulation and sensitivity studies. The role of uncertain parameters is discussed. The influence of important operational parameters of the biological system and of the membrane aeration rate on the filtration performance is investigated. The model provides insight into the MF/UF filtration process in membrane bioreactors and the interplay of the related physical, chemical, and biological phenomena.

[1]  Nicholas F. Gray,et al.  Biology of Wastewater Treatment , 1990 .

[2]  P. Mccarty,et al.  Environmental Biotechnology: Principles and Applications , 2000 .

[3]  A. Kim,et al.  A new model for calculating specific resistance of aggregated colloidal cake layers in membrane filtration processes , 2005 .

[4]  Hiroshi Yasuda Bacterial Biofilms and Infectious Diseases , 1996 .

[5]  Bruce E. Logan,et al.  Collision frequencies of microbial aggregates with small particles by differential sedimentation. , 1997 .

[6]  Jobst Hapke,et al.  Dynamic modeling of an ultrafiltration module for use in a membrane bioreactor , 2005 .

[7]  Wei-Ming Lu,et al.  Cross-flow microfiltration of submicron microbial suspension , 2001 .

[8]  Greg Foley,et al.  Modelling the effects of particle polydispersity in crossflow filtration , 1995 .

[9]  C. Xing Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatment , 2001 .

[10]  B. Rittmann,et al.  Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. , 2004, Water research.

[11]  Xiao-yan Li,et al.  Modelling of membrane fouling in a submerged membrane bioreactor , 2006 .

[12]  Wolfgang Marquardt,et al.  Von der Proze?simulation zur Lebenszyklusmodellierung , 1999 .

[13]  B. Rittmann,et al.  A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. , 2002, Water research.

[14]  Z. Cui,et al.  Upper- and Lower-Bound Estimates of Flux for Gas-Sparged Ultrafiltration with Hollow Fiber Membranes , 2005 .

[15]  Wolfgang Marquardt,et al.  Modellierung und optimierungsbasierte Prozessführung von kommunalen Abwasseraufbereitungsanlagen mit getauchten Membranmodulen , 2006 .

[16]  Rui Liu,et al.  Study on hydraulic characteristics in a submerged membrane bioreactor process , 2000 .

[17]  D. P. Lawrence,et al.  Membrane Bioreactors for Municipal Wastewater Treatment , 2002 .

[18]  C. Boukouvalas,et al.  Simulation of ultrafiltration process and application to pilot tests , 2005 .

[19]  M. Mackley,et al.  Cross-flow cake filtration mechanisms and kinetics , 1992 .

[20]  Simon Judd,et al.  Membrane Fouling in Membrane Bioreactors for Wastewater Treatment , 2002 .

[21]  Bruce E Rittmann,et al.  Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. , 2002, Water research.

[22]  T Higuchi,et al.  A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. , 2001, Water research.

[23]  Eva Sorensen,et al.  The optimal design of membrane systems , 2003 .

[24]  In-Soung Chang,et al.  Membrane filtration characteristics in membrane-coupled activated sludge system -- the effect of physiological states of activated sludge on membrane fouling , 1998 .

[25]  Eva Sorensen,et al.  A general approach to modelling membrane modules , 2003 .

[26]  S. Yamanishi,et al.  Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system , 1998 .

[27]  P A Vanrolleghem,et al.  Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[28]  Anthony G. Fane,et al.  Characteristics of microfiltration of suspensions with inter‐fiber two‐phase flow , 2000 .

[29]  Yasutoshi Shimizu,et al.  Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment , 1996 .

[30]  G. Wallis One Dimensional Two-Phase Flow , 1969 .

[31]  El Hani Bouhabila,et al.  Fouling characterisation in membrane bioreactors , 2001 .

[32]  Joseph F. Frank,et al.  Biofilm Formation and Control in Food Processing Facilities. , 2003, Comprehensive reviews in food science and food safety.

[33]  B. Rittmann,et al.  Evaluating trends in biofilm density using the UMCCA model. , 2004, Water research.

[34]  D. Bixio,et al.  The role of membrane processes in municipal wastewater reclamation and reuse , 2005 .

[35]  J. Heijnen,et al.  A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime , 1997 .

[36]  C. Brepols,et al.  Modelling of a membrane bioreactor system for municipal wastewater treatment , 2003 .

[37]  Zhanfeng Cui,et al.  Enhancing hollow fibre ultrafiltration using slug-flow — a hydrodynamic study , 2002 .

[38]  Simon Judd,et al.  Sub-critical flux fouling in membrane bioreactors : a review of recent literature , 2005 .

[39]  Thomas Melin,et al.  Modelling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment , 2005 .

[40]  Maria Gavrilescu,et al.  Modelling of liquid circulation velocity in concentric-tube airlift reactors , 1998 .

[41]  M. Hamilton,et al.  Statistical Quantification of Detachment Rates and Size Distributions of Cell Clumps from Wild-Type (PAO1) and Cell Signaling Mutant (JP1) Pseudomonas aeruginosa Biofilms , 2004, Applied and Environmental Microbiology.

[42]  Tatsuki Ueda,et al.  Treatment of domestic sewage from rural settlements by a membrane bioreactor , 1996 .

[43]  Wolfgang Marquardt,et al.  Modeling of pore blocking and cake layer formation in membrane filtration for wastewater treatment , 2006 .

[44]  José A. Teixeira,et al.  Hydrodynamic model for three-phase internal- and external-loop airlift reactors , 1999 .

[45]  Pierre R. Bérubé,et al.  Quantifying the shear at the surface of submerged hollow fiber membranes , 2006 .

[46]  Jean-Philippe Croué,et al.  Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). , 2004, Water research.

[47]  Alfons Vogelpohl,et al.  Wastewater treatment in a biological high-performance system with high biomass concentration , 1995 .

[48]  R. Wakeman,et al.  Colloidal fouling of microfiltration membranes during the treatment of aqueous feed streams , 1991 .

[49]  Renbi Bai,et al.  Further work on cake filtration analysis , 2005 .

[50]  Yuriy S. Polyakov,et al.  Deadend outside-in hollow fiber membrane filter: Mathematical model , 2006 .

[51]  M. Dohmann,et al.  Bemessung von Membranbioreaktoren für die kommunale Abwasserreinigung , 2001 .

[52]  Shankararaman Chellam,et al.  Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions , 2005 .

[53]  Raja Ghosh,et al.  Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes , 1999 .

[54]  Ernst Dieter Gilles,et al.  A model library for membrane reactors implemented in the process modelling tool PROMoT , 2004, Comput. Chem. Eng..

[55]  K. Hwang,et al.  Local properties of cake in cross-flow microfiltration of submicron particles , 1998 .