Domain-Dependent Stability Analysis of a Reaction-Diffusion Model on Compact Circular Geometries
暂无分享,去创建一个
[1] H. Swinney,et al. Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.
[2] Ricardo H. Nochetto,et al. Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..
[3] Anotida Madzvamuse,et al. Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations , 2014, Appl. Math. Comput..
[4] K. B. Oldham,et al. An Atlas of Functions. , 1988 .
[5] Ping Liu,et al. Bifurcation analysis of reaction–diffusion Schnakenberg model , 2013, Journal of Mathematical Chemistry.
[6] Anotida Madzvamuse,et al. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion , 2015 .
[7] Andrew J. Wathen,et al. A moving grid finite element method applied to a model biological pattern generator , 2003 .
[8] F. Steele. Depicting complex beauty. , 2001, Genomics.
[9] David Iron,et al. Stability analysis of Turing patterns generated by the Schnakenberg model , 2004, Journal of mathematical biology.
[10] D. V. Griffiths,et al. Programming the finite element method , 1982 .
[11] Roy D. Williams,et al. Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .
[12] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[13] O. Lakkis,et al. Global existence for semilinear reaction–diffusion systems on evolving domains , 2010, Journal of Mathematical Biology.
[14] Anotida Madzvamuse,et al. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.
[15] J. Mackenzie,et al. Analysis of stability and convergence of finite-difference methods for a reaction-diffusion problem on a one-dimensional growing domain , 2011 .
[16] Omar Lakkis,et al. Implicit-Explicit Timestepping with Finite Element Approximation of Reaction-Diffusion Systems on Evolving Domains , 2011, SIAM J. Numer. Anal..
[17] A. Madzvamuse,et al. Classification of parameter spaces for a reaction-diffusion model on stationary domains , 2017 .
[18] Thomas Erneux,et al. Propagating waves in discrete bistable reaction-diffusion systems , 1993 .
[19] E. Wegert. Complex Functions and Images , 2013 .
[20] Leah Keshet,et al. Mathematical Models In Biology , 1988 .
[21] A. Turing. The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.
[22] Prey. The theory of spherical and ellipsoidal harmonics , 1934 .
[23] Junjie Wei,et al. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .
[24] Vidar Thomée,et al. On Galerkin Methods in Semilinear Parabolic Problems , 1975 .
[25] J. Schnakenberg,et al. Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.
[26] D. Leitner,et al. FEM SIMULATION OF BELOW GROUND PROCESSES ON A 3-DIMENSIONAL ROOT SYSTEM GEOMETRY USING DISTMESH AND COMSOL MULTIPHYSICS , 2009 .
[27] D. T. Lee,et al. Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.
[28] Bruce Ian Henry,et al. Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..
[29] Philip K. Maini,et al. Boundary-driven instability , 1997 .
[30] Anotida Madzvamuse,et al. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains , 2006, J. Comput. Phys..
[31] Chuang Xu,et al. Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction–diffusion model , 2012 .
[32] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[33] H. Meinhardt,et al. A theory of biological pattern formation , 1972, Kybernetik.
[34] I. Graham,et al. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.
[35] Weiming Wang,et al. Spatiotemporal dynamics in a delayed diffusive predator model , 2013, Appl. Math. Comput..
[36] C. M. Elliott,et al. The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.
[37] Razvan Stefanescu,et al. Numerical Experiments for Reaction-Diffusion Equations Using Exponential Integrators , 2009, NAA.
[38] Andrew J. Wathen,et al. A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains , 2005, J. Sci. Comput..
[39] Swarup Poria,et al. Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity , 2016 .
[40] I. Epstein,et al. A chemical approach to designing Turing patterns in reaction-diffusion systems. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[41] M. Baines. Moving finite elements , 1994 .
[42] Philip K. Maini,et al. Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains , 2007, J. Comput. Phys..