Domain-Dependent Stability Analysis of a Reaction-Diffusion Model on Compact Circular Geometries

In this work an activator-depleted reaction-diffusion system is investigated on polar coordinates with the aim of exploring the relationship and the corresponding influence of domain size on the types of possible diffusion-driven instabilities. Quantitative relationships are found in the form of necessary conditions on the area of a disk-shape domain with respect to the diffusion and reaction rates for certain types of diffusion-driven instabilities to occur. Robust analytical methods are applied to find explicit expressions for the eigenvalues and eigenfunctions of the diffusion operator on a disk-shape domain with homogenous Neumann boundary conditions in polar coordinates. Spectral methods are applied using chebyshev non-periodic grid for the radial variable and Fourier periodic grid on the angular variable to verify the nodal lines and eigensurfaces subject to the proposed analytical findings. The full classification of the parameter space in light of the bifurcation analysis is obtained and numerically verified by finding the solutions of the partitioning curves inducing such a classification. Spatio-temporal periodic behaviour is demonstrated in the numerical solutions of the system for a proposed choice of parameters and a rigorous proof of the existence of infinitely many such points in the parameter plane is presented under a restriction on the area of the domain, with a lower bound in terms of reaction-diffusion rates.

[1]  H. Swinney,et al.  Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.

[2]  Ricardo H. Nochetto,et al.  Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..

[3]  Anotida Madzvamuse,et al.  Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations , 2014, Appl. Math. Comput..

[4]  K. B. Oldham,et al.  An Atlas of Functions. , 1988 .

[5]  Ping Liu,et al.  Bifurcation analysis of reaction–diffusion Schnakenberg model , 2013, Journal of Mathematical Chemistry.

[6]  Anotida Madzvamuse,et al.  Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion , 2015 .

[7]  Andrew J. Wathen,et al.  A moving grid finite element method applied to a model biological pattern generator , 2003 .

[8]  F. Steele Depicting complex beauty. , 2001, Genomics.

[9]  David Iron,et al.  Stability analysis of Turing patterns generated by the Schnakenberg model , 2004, Journal of mathematical biology.

[10]  D. V. Griffiths,et al.  Programming the finite element method , 1982 .

[11]  Roy D. Williams,et al.  Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .

[12]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[13]  O. Lakkis,et al.  Global existence for semilinear reaction–diffusion systems on evolving domains , 2010, Journal of Mathematical Biology.

[14]  Anotida Madzvamuse,et al.  Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.

[15]  J. Mackenzie,et al.  Analysis of stability and convergence of finite-difference methods for a reaction-diffusion problem on a one-dimensional growing domain , 2011 .

[16]  Omar Lakkis,et al.  Implicit-Explicit Timestepping with Finite Element Approximation of Reaction-Diffusion Systems on Evolving Domains , 2011, SIAM J. Numer. Anal..

[17]  A. Madzvamuse,et al.  Classification of parameter spaces for a reaction-diffusion model on stationary domains , 2017 .

[18]  Thomas Erneux,et al.  Propagating waves in discrete bistable reaction-diffusion systems , 1993 .

[19]  E. Wegert Complex Functions and Images , 2013 .

[20]  Leah Keshet,et al.  Mathematical Models In Biology , 1988 .

[21]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[22]  Prey The theory of spherical and ellipsoidal harmonics , 1934 .

[23]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[24]  Vidar Thomée,et al.  On Galerkin Methods in Semilinear Parabolic Problems , 1975 .

[25]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[26]  D. Leitner,et al.  FEM SIMULATION OF BELOW GROUND PROCESSES ON A 3-DIMENSIONAL ROOT SYSTEM GEOMETRY USING DISTMESH AND COMSOL MULTIPHYSICS , 2009 .

[27]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[28]  Bruce Ian Henry,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[29]  Philip K. Maini,et al.  Boundary-driven instability , 1997 .

[30]  Anotida Madzvamuse,et al.  Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains , 2006, J. Comput. Phys..

[31]  Chuang Xu,et al.  Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction–diffusion model , 2012 .

[32]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[33]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[34]  I. Graham,et al.  Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.

[35]  Weiming Wang,et al.  Spatiotemporal dynamics in a delayed diffusive predator model , 2013, Appl. Math. Comput..

[36]  C. M. Elliott,et al.  The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.

[37]  Razvan Stefanescu,et al.  Numerical Experiments for Reaction-Diffusion Equations Using Exponential Integrators , 2009, NAA.

[38]  Andrew J. Wathen,et al.  A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains , 2005, J. Sci. Comput..

[39]  Swarup Poria,et al.  Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity , 2016 .

[40]  I. Epstein,et al.  A chemical approach to designing Turing patterns in reaction-diffusion systems. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Baines Moving finite elements , 1994 .

[42]  Philip K. Maini,et al.  Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains , 2007, J. Comput. Phys..