Spatial and orientation control of cylindrical nanostructures in ABA triblock copolymer thin films by raster solvent vapor annealing.

We present a spatially resolved approach for the solvent vapor annealing (SVA) of block copolymer thin films that permits the facile and relatively rapid manipulation of nanoscale ordering and nanostructure orientation. In our method, a localized (point) SVA zone is created through the use of a vapor delivery nozzle. This point annealing zone can be rastered across the thin film using a motorized stage to control the local nanoscale structure and orientation in a cylinder-forming ABA triblock copolymer thin film. At moderate rastering speeds (∼100 μm/s) (i.e., relatively modest annealing time at a given point), the film displayed ordered cylindrical nanostructures with the cylinders oriented parallel to the substrate surface. As the rastering speed was decreased (∼10 μm/s), the morphology transformed into a surface nanostructure indicative of cylinders oriented perpendicular to the substrate surface. These perpendicular cylinder orientations also were created by rastering multiple times over the same region, and this effect was found when rastering in either retrace (overlapping) or crossed-path (orthogonal) geometries. Similar trends in nanostructure orientation and ordering were obtained from various nozzle diameters by accounting for differences in solvent flux and annealing time, illustrating the universality of this approach. Finally, we note that our "stylus-based" raster solvent vapor annealing technique allows a given point to be solvent annealed approximately 2 orders of magnitude faster than conventional "bell jar" solvent vapor annealing.

[1]  Matthew Libera,et al.  Kinetic Constraints on the Development of Surface Microstructure in SBS Thin Films , 1998 .

[2]  Julie N. L. Albert,et al.  Manipulating morphology and orientation in thermally responsive block copolymer thin films , 2012 .

[3]  T. Hashimoto,et al.  Macroscopically oriented lamellar microdomains created by “cold zone-heating” method involving OOT , 2008 .

[4]  Dorthe Posselt,et al.  Structural rearrangements in a lamellar diblock copolymer thin film during treatment with saturated solvent vapor. , 2010, Macromolecules.

[5]  K. Winey,et al.  Reversible stimuli-responsive nanostructures assembled from amphiphilic block copolymers. , 2006, Nano letters.

[6]  Julie N. L. Albert,et al.  Self-assembly of block copolymer thin films , 2010 .

[7]  Thomas P. Russell,et al.  Solvent annealing thin films of poly (isoprene- b-lactide) , 2005 .

[8]  Armin Knoll,et al.  Phase behavior in thin films of cylinder-forming ABA block copolymers: experiments. , 2004, The Journal of chemical physics.

[9]  P. Chaikin,et al.  Enhanced Order of Block Copolymer Cylinders in Single‐Layer Films Using a Sweeping Solidification Front , 2007 .

[10]  Yu Xuan,et al.  Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment , 2004 .

[11]  Krzysztof Matyjaszewski,et al.  Long-range ordered thin films of block copolymers prepared by zone-casting and their thermal conversion into ordered nanostructured carbon. , 2005, Journal of the American Chemical Society.

[12]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[13]  A. Böker,et al.  Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. , 2006, Soft matter.

[14]  M. Hillmyer,et al.  Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. , 2010, ACS nano.

[15]  W. Phillip,et al.  Self-assembled block copolymer thin films as water filtration membranes. , 2010, ACS applied materials & interfaces.

[16]  L. Francesch,et al.  Fast annealing and patterning of polymer solar cells by means of vapor printing , 2012 .

[17]  T. Hashimoto,et al.  Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient: Real-Space Analysis , 2008 .

[18]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[19]  A. Knoll,et al.  Nanoscaling of microdomain spacings in thin films of cylinder-forming block copolymers. , 2007, Nano letters.

[20]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[21]  Kenji Fukunaga,et al.  Observation of Perpendicular Orientation in Symmetric Diblock Copolymer Thin Films on Rough Substrates , 2003 .

[22]  Erin M. Lennon,et al.  Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays , 2008, Science.

[23]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[24]  Zhijun Hu,et al.  Lateral nanopatterns in thin diblock copolymer films induced by selective solvents. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[25]  Russell B. Thompson,et al.  Equilibrium behavior of symmetric ABA triblock copolymer melts , 1999 .

[26]  Matthew Libera,et al.  Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films , 1998 .

[27]  Mariela J. Pavan,et al.  Two-dimensional nanoparticle organization using block copolymer thin films as templates , 2011 .

[28]  M. V. Dijk,et al.  Ordering Phenomena in Thin Block Copolymer Films Studied Using Atomic Force Microscopy , 1995 .

[29]  E. Thomas,et al.  Robust block copolymer mask for nanopatterning polymer films. , 2010, ACS nano.

[30]  Eric W. Cochran,et al.  Effect of Chain Architecture and Surface Energies on the Ordering Behavior of Lamellar and Cylinder Forming Block Copolymers , 2006 .

[31]  Mark P. Stoykovich,et al.  Directed assembly of cylinder-forming block copolymers into patterned structures to fabricate arrays of spherical domains and nanoparticles , 2007 .

[32]  Y. Jung,et al.  Well-ordered thin-film nanopore arrays formed using a block-copolymer template. , 2009, Small.

[33]  R. Ruiz,et al.  Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly , 2008, Science.

[34]  Kathryn L Beers,et al.  Gradient solvent vapor annealing of block copolymer thin films using a microfluidic mixing device. , 2011, Nano letters.

[35]  D. Amabilino,et al.  Vapour printing: patterning of the optical and electrical properties of organic semiconductors in one simple step , 2012 .

[36]  R. Composto,et al.  Amphiphilic Block Copolymer Films: Phase Transition, Stabilization, and Nanoscale Templates , 2009 .

[37]  T. Witten,et al.  Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties , 1994 .

[38]  Yoshinori Funaki,et al.  Single-Grain Lamellar Microdomain from a Diblock Copolymer , 1999 .

[39]  A. Knoll,et al.  Phase behavior in thin films of cylinder-forming block copolymers. , 2002, Physical review letters.

[40]  C. Hawker,et al.  Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns , 2009, Advanced materials.

[41]  T. Hashimoto,et al.  Ordering of Cylindrical Domains of Block Copolymers under Moving Temperature Gradient: Separation of ▽T-Induced Ordering from Surface-Induced Ordering , 2008 .

[42]  M. Matsen Architectural Effect on the Surface Tension of an ABA Triblock Copolymer Melt , 2010 .

[43]  F. Bates,et al.  Fluctuations, conformational asymmetry and block copolymer phase behaviour , 1994 .

[44]  Yoshinori Funaki,et al.  The Effect of Temperature Gradient on the Microdomain Orientation of Diblock Copolymers Undergoing an Order−Disorder Transition , 1999 .

[45]  F. Bates,et al.  Lithium Perchlorate-Doped Poly(styrene-b-ethylene oxide-b-styrene) Lamellae-Forming Triblock Copolymer as High Capacitance, Smooth, Thin Film Dielectric , 2009 .

[46]  A. Knoll,et al.  Effect of confinement on the mesoscale and macroscopic swelling of thin block copolymer films. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[47]  K. Matyjaszewski,et al.  Robust control of microdomain orientation in thin films of block copolymers by zone casting. , 2011, Journal of the American Chemical Society.

[48]  Bumjoon J. Kim,et al.  Effect of Humidity on the Ordering of PEO-Based Copolymer Thin Films , 2007 .

[49]  Thomas H. Epps,et al.  Generating thickness gradients of thin polymer films via flow coating , 2006 .

[50]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[51]  E. Kramer,et al.  Structure of Asymmetric Diblock Copolymers in Thin Films , 2000 .

[52]  E. W. Edwards,et al.  Directed assembly of cylinder-forming block copolymer films and thermochemically induced cylinder to sphere transition: a hierarchical route to linear arrays of nanodots. , 2005, Nano letters.

[53]  A. Knoll,et al.  Volume Imaging of an Ultrathin SBS Triblock Copolymer Film , 2000 .

[54]  Soo-Jin Park,et al.  Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films , 2008 .

[55]  V. Deline,et al.  Surface-induced orientation of symmetric, diblock copolymers: a secondary ion mass spectrometry study , 1989 .

[56]  S. Darling Block copolymers for photovoltaics , 2009 .

[57]  Huiman Kang,et al.  Placement control of nanomaterial arrays on the surface-reconstructed block copolymer thin films. , 2009, ACS nano.

[58]  Brian C. Berry,et al.  Evolution of block-copolymer order through a moving thermal zone , 2010 .

[59]  Caroline A. Ross,et al.  Solvent‐Vapor‐Induced Tunability of Self‐Assembled Block Copolymer Patterns , 2009 .

[60]  Brian C. Berry,et al.  Orientational order in block copolymer films zone annealed below the order--disorder transition temperature. , 2007, Nano letters.

[61]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[62]  Caroline A. Ross,et al.  Densely Packed Arrays of Ultra‐High‐Aspect‐Ratio Silicon Nanowires Fabricated using Block‐Copolymer Lithography and Metal‐Assisted Etching , 2009 .

[63]  Seth B. Darling,et al.  Optoelectronics using block copolymers , 2010 .

[64]  Kevin A. Cavicchi,et al.  Solvent Annealed Thin Films of Asymmetric Polyisoprene−Polylactide Diblock Copolymers , 2007 .

[65]  Julie N. L. Albert,et al.  Systematic study on the effect of solvent removal rate on the morphology of solvent vapor annealed ABA triblock copolymer thin films. , 2012, ACS nano.

[66]  T. Hashimoto,et al.  Ordering of Cylindrical Domain of Block Copolymers under Moving Temperature Gradient: Effects of Moving Rate , 2008 .

[67]  Xavier Andre,et al.  Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An In Situ GISAXS study. , 2010, Macromolecules.