Hailstorm Detection by Satellite Microwave Radiometers

[1]  Chris Kidd,et al.  The 183-WSL fast rain rate retrieval algorithm. Part II: Validation using ground radar measurements , 2013 .

[2]  Guy Kelman,et al.  Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase , 2008 .

[3]  Luca Nisi,et al.  Spatial and temporal distribution of hailstorms in the Alpine region: a long‐term, high resolution, radar‐based analysis , 2016 .

[4]  Daniel J. Cecil,et al.  Passive Microwave Brightness Temperatures as Proxies for Hailstorms , 2009 .

[5]  K. Bedka,et al.  A new physically based stochastic event catalog for hail in Europe , 2014, Natural Hazards.

[6]  Fuzhong Weng,et al.  NOAA operational hydrological products derived from the advanced microwave sounding unit , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Albin J. Gasiewski,et al.  Influence of microphysical cloud parameterizations on microwave brightness temperatures , 2002, IEEE Trans. Geosci. Remote. Sens..

[9]  D. Cecil,et al.  Constructing a Multifrequency Passive Microwave Hail Retrieval and Climatology in the GPM Domain , 2019, Journal of Applied Meteorology and Climatology.

[10]  Kristin M. Calhoun,et al.  Multi-Radar Multi-Sensor (MRMS) Severe Weather and Aviation Products: Initial Operating Capabilities , 2016 .

[11]  D. Cecil Relating Passive 37-GHz Scattering to Radar Profiles in Strong Convection , 2011 .

[12]  David A. Santek,et al.  Measuring the Global Distribution of Intense Convection over Land with Passive Microwave Radiometry , 1985 .

[13]  Gian Franco Sacco,et al.  Global Precipitation Measuring Dual-Frequency Precipitation Radar Observations of Hailstorm Vertical Structure: Current Capabilities and Drawbacks , 2018, Journal of Applied Meteorology and Climatology.

[14]  J. Chaboureau,et al.  Potential of Advanced Microwave Sounding Unit to identify precipitating systems and associated upper‐level features in the Mediterranean region: Case studies , 2007 .

[15]  E. García‐Ortega,et al.  Characterization of hailstone size spectra in hailpad networks in France, Spain, and Argentina , 2009 .

[16]  Giulia Panegrossi,et al.  Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory , 2017 .

[17]  Jesse H. Ausubel,et al.  Carrying Capacity: A Model with Logistically Varying Limits , 1999 .

[18]  Catherine Prigent,et al.  Microwave land emissivity calculations using AMSU measurements , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[19]  José Luis Sánchez,et al.  Daytime identification of summer hailstorm cells from MSG data , 2013 .

[20]  Estelle de Coning,et al.  Using satellite data to identify and track intense thunderstorms in South and southern Africa , 2015 .

[21]  Jungang Miao,et al.  Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz , 2005 .

[22]  H. Ramsay,et al.  Radar‐based climatology of damaging hailstorms in Brisbane and Sydney, Australia , 2020, Quarterly Journal of the Royal Meteorological Society.

[23]  Ralf Bennartz,et al.  Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles , 2003 .

[24]  Giulia Panegrossi,et al.  The Passive Microwave Neural Network Precipitation Retrieval (PNPR) Algorithm for the CONICAL Scanning Global Microwave Imager (GMI) Radiometer , 2018, Remote. Sens..

[25]  J. Mecikalski,et al.  Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds , 2011 .

[26]  Qinghong Zhang,et al.  On the Detection of Hail Using Satellite Passive Microwave Radiometers and Precipitation Radar , 2017 .

[27]  Bettina Bauer-Messmer,et al.  Satellite data based detection and prediction of hail , 1997 .

[28]  Chuntao Liu,et al.  Properties of hail storms over China and the United States from the Tropical Rainfall Measuring Mission , 2016, Journal of geophysical research. Atmospheres : JGR.

[29]  Vincenzo Levizzani,et al.  The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design , 2011 .

[30]  Harold E. Brooks,et al.  An Objective High-Resolution Hail Climatology of the Contiguous United States , 2012 .

[31]  D. Cecil,et al.  Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10–183 GHz , 2015 .

[32]  D. Santek,et al.  Severe Storm Identification with Satellite Microwave Radiometry: An Initial Investigation with Nimbus-7 SMMR Data , 1987 .

[33]  Simone Tanelli,et al.  Hail-Detection Algorithm for the GPM Core Observatory Satellite Sensors , 2017 .

[34]  David H. Staelin,et al.  Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..

[35]  Paul Racette,et al.  Storm-Associated Microwave Radiometric Signatures in the Frequency Range of 90 220 GHz , 1997 .

[36]  D. Cecil,et al.  Toward a Global Climatology of Severe Hailstorms as Estimated by Satellite Passive Microwave Imagers , 2012 .

[37]  Hail embryons detection in clouds using passive and active radars in millimeter and submillimeter wave bands , 1993 .

[38]  P. Bauer,et al.  Hydrometeor Retrieval Accuracy Using Microwave Window and Sounding Channel Observations , 2005 .

[39]  Ralph Ferraro,et al.  A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU) , 2015 .

[40]  M. J. Costa,et al.  Extreme precipitation on the Island of Madeira on 20 February 2010 as seen by satellite passive microwave sounders , 2013 .

[41]  W. Olson,et al.  Heavy Thunderstorms Observed Over Land by the Nimbus 7 Scanning Multichannel Microwave Radiometer. , 1983 .

[42]  G. Holland,et al.  Global estimates of damaging hail hazard , 2018, Weather and Climate Extremes.

[43]  Jungang Miao,et al.  Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements , 2005 .