Functions as Permutations: Regarding No Free Lunch, Walsh Analysis and Summary Statistics

Permutations can represent search problems when all points in the search space have unique evaluations. Given a particular set of N evaluations we have N! search algorithms and N! possible functions. A general No Free Lunch result holds for this finite set of N! functions. Furthermore, it is proven that the average description length over the set of N! functions must be O(N lg N). Thus if the size of the search space is exponentially large with respect to a parameter set which specifies a point in the search space, then the description length of the set of N! functions must also be exponential on average. Summary statistics are identical for all instances of the set of N! functions, including mean, variance, skew and other r-moment statistics. These summary statistics can be used to show that any set of N! functions must obey a set of identical constraints which holds over the set of Walsh coefficients. This also imposes mild constraints on schema information for the set of N! functions. When N = 2L subsets of the N! functions are related via Gray codes which partition N! into equivalence classes of size 2L.

[1]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[2]  Patrick D. Surry,et al.  Fundamental Limitations on Search Algorithms: Evolutionary Computing in Perspective , 1995, Computer Science Today.

[3]  Colin R. Reeves,et al.  An Experimental Design Perspective on Genetic Algorithms , 1994, FOGA.

[4]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[5]  L. Darrell Whitley,et al.  Search, Binary Representations and Counting Optima , 1999 .

[6]  C. Tovey Hill Climbing with Multiple Local Optima , 1985 .

[7]  Joseph C. Culberson,et al.  On the Futility of Blind Search: An Algorithmic View of No Free Lunch , 1998, Evolutionary Computation.

[8]  Joseph Culberson On the Futility of Blind Search , 1996 .

[9]  L. Darrell Whitley,et al.  Test Function Generators as Embedded Landscapes , 1998, FOGA.

[10]  L. Darrell Whitley,et al.  Bit Representations with a Twist , 1997, ICGA.

[11]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[12]  L. Darrell Whitley,et al.  Polynomial Time Summary Statistics for a Generalization of MAXSAT , 1999, GECCO.

[13]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis , 1989, Complex Syst..

[14]  L. Darrell Whitley,et al.  Dynamic Representations and Escaping Local Optima: Improving Genetic Algorithms and Local Search , 2000, AAAI/IAAI.