Chordal Deletion is Fixed-Parameter Tractable

It is known to be NP-hard to decide whether a graph can be made chordal by the deletion of k vertices or by the deletion of k edges. Here we present a uniformly polynomial-time algorithm for both problems: the running time is f(k)⋅nα for some constant α not depending on k and some f depending only on k. For large values of n, such an algorithm is much better than trying all the O(nk) possibilities. Therefore, the chordal deletion problem parameterized by the number k of vertices or edges to be deleted is fixed-parameter tractable. This answers an open question of Cai (Discrete Appl. Math. 127:415–429, 2003).

[1]  T. Gallai Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen , 1964 .

[2]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2010, J. Discrete Algorithms.

[3]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[4]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[5]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[6]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, WG.

[7]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[8]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[9]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[10]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[11]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[12]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[13]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[14]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[15]  Pinar Heggernes,et al.  Interval completion with few edges , 2007, STOC '07.

[16]  Martin Grohe Computing crossing numbers in quadratic time , 2004, J. Comput. Syst. Sci..

[17]  Stephan Kreutzer,et al.  Computing excluded minors , 2008, SODA '08.

[18]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[19]  Dániel Marx,et al.  Parameterized coloring problems on chordal graphs , 2004, Theor. Comput. Sci..

[20]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[21]  Daniel Lokshtanov,et al.  Wheel-Free Deletion Is W[2]-Hard , 2008, IWPEC.

[22]  Jon M. Kleinberg,et al.  Detecting a Network Failure , 2004, Internet Math..

[23]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[24]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[25]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[26]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..