Hermite Interpolation in Loop Groups and Conjugate Quadrature Filter Approximation

Abstract A classical result of Weierstrass ensures that any continuous finite length trajectory in a vector space can be uniformly approximated by one whose coordinates are trigonometric functions. We derive an analogous result for trajectories in spheres and apply it to show that a continuous frequency response of a conjugate quadrature filter can be uniformly approximated by the frequency response of a finitely supported conjugate quadrature filter. We also extend this result, so as to preserve specified roots of the frequency response, and derive an approximation result for refinable functions whose integer translates are orthonormal. Our methods utilize properties of loop groups, jets, and the Brouwer topological degree.

[1]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  K. Deimling Nonlinear functional analysis , 1985 .

[4]  P. P. Vaidyanathan,et al.  Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial , 1990, Proc. IEEE.

[5]  M. Powell,et al.  Approximation theory and methods , 1984 .

[6]  A. Carey,et al.  Loop groups and quantum fields , 2010, 1007.1629.

[7]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[8]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[9]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[10]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[11]  D. Bleecker,et al.  Topology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic Physics , 1989 .

[12]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[13]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[14]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[15]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[16]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[17]  A. L. Onishchik,et al.  Foundations of Lie theory ; Lie transformation groups , 1993 .

[18]  M. Rieffel,et al.  Wavelet Filter Functions, the Matrix Completion Problem, and Projective Modules Over C(Tn) , 2003 .

[19]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[20]  G. Shilov,et al.  Linear Algebra , 1971 .

[21]  Charles A. Micchelli,et al.  Using the refinement equation for the construction of pre-wavelets V: Extensibility of trigonometric polynomials , 2005, Computing.

[22]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[23]  P. Vaidyanathan Quadrature mirror filter banks, M-band extensions and perfect-reconstruction techniques , 1987, IEEE ASSP Magazine.

[24]  H. Kleinert Path Integrals in Quantum Mechanics Statistics and Polymer Physics , 1990 .

[25]  J. Zinn-Justin Path integrals in quantum mechanics , 2005 .

[26]  Martin Vetterli,et al.  A theory of multirate filter banks , 1987, IEEE Trans. Acoust. Speech Signal Process..

[27]  Harry Dym,et al.  Fourier series and integrals , 1972 .

[28]  W. Rudin Real and complex analysis , 1968 .

[29]  W. Janke,et al.  Properties of higher-order Trotter formulas , 1992 .

[30]  R. Ho Algebraic Topology , 2022 .

[31]  H. L. Resnikoff,et al.  Wavelet analysis: the scalable structure of information , 1998 .

[32]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[33]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[34]  D. Pollen,et al.  _{}(2,[,1/]) for a subfield of , 1990 .

[35]  T. Barnwell,et al.  A procedure for designing exact reconstruction filter banks for tree-structured subband coders , 1984, ICASSP.

[36]  D. Pollen SU I (2, F [ z,1/z ]) for F A Subfield of C , 1990 .

[37]  A. Ashtekar,et al.  Loops, knots, gauge theories and quantum gravity , 1996 .

[38]  O. Herrmann On the approximation problem in nonrecursive digital filter design , 1971 .

[39]  Marc A. Rieffel,et al.  Projective Multi-Resolution Analyses for L2(ℝ2) , 2004 .

[40]  Wayne Lawton,et al.  Multiresolution properties of the wavelet Galerkin operator , 1991 .

[41]  L. Fejér Über trigonometrische Polynome. , 1916 .

[42]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[43]  Martin Vetterli,et al.  Splitting a signal into subsampled channels allowing perfect reconstruction , 1985 .

[44]  Compactly Supported Wavelets and Representations of the Cuntz Relations , 1999, math/9912129.

[45]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[46]  Charles A. Micchelli Using The Refinement Equation For The Construction of Pre-Wavelets VI: Shift Invariant Subspaces , 1992 .

[47]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[48]  Orthogonality Criteria for Compactly Supported Scaling Functions , 1994 .

[49]  Joachim Cuntz,et al.  K-theory and C*-algebras , 1984 .

[50]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[51]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[52]  H. Trotter On the product of semi-groups of operators , 1959 .

[53]  Y. Meyer Wavelets and Operators , 1993 .

[54]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[55]  H. Whitney The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .