Algorithm 823: Implementing scrambled digital sequences
暂无分享,去创建一个
[1] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[2] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[3] Jonathan Lichtner. Iterating an alpha-ary Gray Code , 1998, SIAM J. Discret. Math..
[4] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[5] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[6] Wolfgang Ch. Schmid. THE EXACT QUALITY PARAMETER OF NETS DERIVED FROM SOBOL’ AND NIEDERREITER SEQUENCES , 1999 .
[7] Rong-Xian Yue. VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .
[8] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[9] B. Fox. Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.
[10] H. Niederreiter,et al. Nets, ( t, s )-Sequences, and Algebraic Geometry , 1998 .
[11] Shu Tezuka,et al. Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .
[12] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[13] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[14] Shu Tezuka,et al. Uniform Random Numbers , 1995 .
[15] A. Genz. Numerical Computation of Multivariate Normal Probabilities , 1992 .
[16] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[17] Jackson B. Lackey,et al. Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .
[18] Harald Niederreiter,et al. Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .
[19] Gerhard Larcher. On the Distribution of Digital Sequences , 1998 .
[20] Fred J. Hickernell,et al. The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..
[21] F. J. Hickernell. What Affects the Accuracy of Quasi-Monte Carlo Quadrature? , 2000 .
[22] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[23] J. McNamee,et al. Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas , 1967 .
[24] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[25] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[26] Rong-Xian Yue,et al. On the variance of quadrature over scrambled nets and sequences , 1999 .
[27] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[28] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .
[29] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[30] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[31] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[32] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[33] Frank Stenger,et al. Con-struction of fully symmetric numerical integration formulas , 1967 .
[34] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[35] Frank Bretz,et al. Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .
[36] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[37] B. Keister. Multidimensional quadrature algorithms , 1996 .
[38] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[39] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[40] Anargyros Papageorgiou,et al. Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.
[41] Fred J. Hickernell,et al. Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .
[42] Alan,et al. Comparison of Methods for the Computationof Multivariate Normal Probabilities , 1993 .
[43] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[44] Fred J. Hickernell,et al. Goodness-of-fit statistics, discrepancies and robust designs , 1999 .
[45] J HickernellF,et al. Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .
[46] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[47] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[48] Alan C. Genz. A Lagrange Extrapolation Algorithm for Sequences of Approximations to Multiple Integrals , 1982 .
[49] Gottlieb Pirsic,et al. A Software Implementation of Niederreiter-Xing Sequences , 2002 .
[50] Art B. Owen,et al. Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .