Algorithm 823: Implementing scrambled digital sequences

Random scrambling of deterministic (t, m, s)-nets and (t, s)-sequences eliminates their inherent bias while retaining their low-discrepancy properties. This article describes an implementation of two types of random scrambling, one proposed by Owen and another proposed by Faure and Tezuka. The four different constructions of digital sequences implemented are those proposed by Sobol', Faure, Niederreiter, and Niederreiter and Xing. Because the random scrambling involves manipulating all digits of each point, the code must be written carefully to minimize the execution time. Computed root mean square discrepancies of the scrambled sequences are compared to known theoretical results. Furthermore, the performances of these sequences on various test problems are discussed.

[1]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[2]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[3]  Jonathan Lichtner Iterating an alpha-ary Gray Code , 1998, SIAM J. Discret. Math..

[4]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[5]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[6]  Wolfgang Ch. Schmid THE EXACT QUALITY PARAMETER OF NETS DERIVED FROM SOBOL’ AND NIEDERREITER SEQUENCES , 1999 .

[7]  Rong-Xian Yue VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .

[8]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[9]  B. Fox Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.

[10]  H. Niederreiter,et al.  Nets, ( t, s )-Sequences, and Algebraic Geometry , 1998 .

[11]  Shu Tezuka,et al.  Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .

[12]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[13]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[14]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[15]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[16]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[17]  Jackson B. Lackey,et al.  Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .

[18]  Harald Niederreiter,et al.  Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .

[19]  Gerhard Larcher On the Distribution of Digital Sequences , 1998 .

[20]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..

[21]  F. J. Hickernell What Affects the Accuracy of Quasi-Monte Carlo Quadrature? , 2000 .

[22]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[23]  J. McNamee,et al.  Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas , 1967 .

[24]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[25]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[26]  Rong-Xian Yue,et al.  On the variance of quadrature over scrambled nets and sequences , 1999 .

[27]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[28]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[29]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[30]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[31]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[32]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[33]  Frank Stenger,et al.  Con-struction of fully symmetric numerical integration formulas , 1967 .

[34]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[35]  Frank Bretz,et al.  Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .

[36]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[37]  B. Keister Multidimensional quadrature algorithms , 1996 .

[38]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[39]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[40]  Anargyros Papageorgiou,et al.  Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.

[41]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[42]  Alan,et al.  Comparison of Methods for the Computationof Multivariate Normal Probabilities , 1993 .

[43]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[44]  Fred J. Hickernell,et al.  Goodness-of-fit statistics, discrepancies and robust designs , 1999 .

[45]  J HickernellF,et al.  Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .

[46]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[47]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[48]  Alan C. Genz A Lagrange Extrapolation Algorithm for Sequences of Approximations to Multiple Integrals , 1982 .

[49]  Gottlieb Pirsic,et al.  A Software Implementation of Niederreiter-Xing Sequences , 2002 .

[50]  Art B. Owen,et al.  Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .