Effective Repair of Traumatically Injured Spinal Cord by Nanoscale Block Copolymer Micelles

[1]  R. Shi,et al.  Repairing the damaged spinal cord and brain with nanomedicine. , 2008, Small.

[2]  Kinam Park,et al.  Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging , 2008, Proceedings of the National Academy of Sciences.

[3]  Stacie A. Chvatal,et al.  Spatial distribution and acute anti-inflammatory effects of Methylprednisolone after sustained local delivery to the contused spinal cord. , 2008, Biomaterials.

[4]  P. Low,et al.  Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[5]  Chiraphon Chaibundit,et al.  Block copolymers for drug solubilisation: relative hydrophobicities of polyether and polyester micelle-core-forming blocks. , 2007, International journal of pharmaceutics.

[6]  D. Ditor,et al.  Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat , 2007, Journal of neuroscience research.

[7]  K. Letchford,et al.  A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[8]  Christine Allen,et al.  In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  U. Kang,et al.  Neuroprotective effect of the surfactant poloxamer 188 in a model of intracranial hemorrhage in rats. , 2007, Journal of neurosurgery.

[10]  B. Lentz,et al.  PEG as a tool to gain insight into membrane fusion , 2007, European Biophysics Journal.

[11]  Stephen B. McMahon,et al.  Spinal cord repair strategies: why do they work? , 2006, Nature Reviews Neuroscience.

[12]  Fred H. Gage,et al.  Therapeutic interventions after spinal cord injury , 2006, Nature Reviews Neuroscience.

[13]  Michael G Fehlings,et al.  Pharmacological approaches to repair the injured spinal cord. , 2006, Journal of neurotrauma.

[14]  D. Maysinger,et al.  Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  Sung Wan Kim,et al.  Novel pH sensitive block copolymer micelles for solvent free drug loading. , 2006, Macromolecular bioscience.

[16]  A. Martin-Villalba,et al.  Molecular targets in spinal cord injury , 2005, Journal of Molecular Medicine.

[17]  Riyi Shi,et al.  Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. , 2005, Biophysical journal.

[18]  G. Breur,et al.  A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. , 2004, Journal of neurotrauma.

[19]  R. Shi,et al.  Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. , 2004, Journal of neurotrauma.

[20]  Raphael C. Lee,et al.  Subcutaneous tri‐block copolymer produces recovery from spinal cord injury , 2004, Journal of neuroscience research.

[21]  R. Duncan The dawning era of polymer therapeutics , 2003, Nature Reviews Drug Discovery.

[22]  Riyi Shi,et al.  Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury , 2002, Journal of neurochemistry.

[23]  K. Fouad,et al.  Protective effects of oral creatine supplementation on spinal cord injury in rats , 2002, Spinal Cord.

[24]  K. Kataoka,et al.  Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles in aqueous milieu. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[25]  Raphael C. Lee,et al.  Direct observation of poloxamer 188 insertion into lipid monolayers. , 2002, Biophysical journal.

[26]  R. Liggins,et al.  Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. , 2002, Advanced drug delivery reviews.

[27]  R. Borgens,et al.  Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol , 2001, Journal of neuroscience research.

[28]  A. Kabanov,et al.  Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. , 2001, The Journal of pharmacology and experimental therapeutics.

[29]  R. Shi,et al.  Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  W. Hunter,et al.  Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel , 1999 .

[31]  Raphael C. Lee,et al.  Pharmaceutical Therapies for Sealing of Permeabilized Cell Membranes in Electrical Injuriesa , 1999, Annals of the New York Academy of Sciences.

[32]  A. Blight,et al.  Functional reconnection of severed mammalian spinal cord axons with polyethylene glycol. , 1999, Journal of neurotrauma.

[33]  D. Basso,et al.  A sensitive and reliable locomotor rating scale for open field testing in rats. , 1995, Journal of neurotrauma.

[34]  B. Lentz,et al.  Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. , 1994, Chemistry and physics of lipids.

[35]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[36]  R. Lee,et al.  Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  W. Young Role of calcium in central nervous system injuries. , 1992, Journal of neurotrauma.

[38]  G. Bittner,et al.  Rapid morphological fusion of severed myelinated axons by polyethylene glycol. , 1990, Proceedings of the National Academy of Sciences of the United States of America.