Branch-and-bound algorithms for minimizing total earliness and tardiness in a two-machine permutation flow shop with unforced idle allowed

Abstract The two-machine permutation flow shop scheduling problem with the objective of minimizing total earliness and tardiness is addressed. Unforced idle time can be used to complete jobs closer to their due dates. It is shown that unforced idle time only needs to be considered on the second machine. This result is then used to extend a lower bound and dominance conditions for the single-machine problem to the two-machine permutation flow shop problem. Two branch-and-bound algorithms are developed for the problem utilizing the lower bound and dominance conditions. The algorithms are tested using instances that represent a wide variety of conditions.

[1]  W. Szwarc Adjacent orderings in single-machine scheduling with earliness and tardiness penalties , 1993 .

[2]  G. Moslehi,et al.  Two-machine flow shop scheduling to minimize the sum of maximum earliness and tardiness , 2009 .

[3]  Gary D. Scudder,et al.  Sequencing with Earliness and Tardiness Penalties: A Review , 1990, Oper. Res..

[4]  John J. Kanet,et al.  Single-machine scheduling with early and tardy completion costs , 1993 .

[5]  Rym M'Hallah,et al.  An iterated local search variable neighborhood descent hybrid heuristic for the total earliness tardiness permutation flow shop , 2014 .

[6]  C. Rajendran Formulations and heuristics for scheduling in a Kanban flowshop to minimize the sum of weighted flowtime, weighted tardiness and weighted earliness of containers , 1999 .

[7]  Kenji Itoh,et al.  A knowledgeable simulated annealing scheme for the early/tardy flow shop scheduling problem , 1995 .

[8]  Pankaj Chandra,et al.  Permutation flow shop scheduling with earliness and tardiness penalties , 2004 .

[9]  Jeffrey E. Schaller,et al.  An evaluation of heuristics for scheduling a non-delay permutation flow shop with family setups to minimize total earliness and tardiness , 2013, J. Oper. Res. Soc..

[10]  Jorge M. S. Valente Beam Search Heuristics for the Single Machine Scheduling Problem with Linear earliness and Quadratic tardiness Costs , 2009, Asia Pac. J. Oper. Res..

[11]  Jatinder N. D. Gupta,et al.  The two-machine flowshop scheduling problem with total tardiness , 1989, Comput. Oper. Res..

[12]  Victor Fernandez-Viagas,et al.  Efficient constructive and composite heuristics for the Permutation Flowshop to minimise total earliness and tardiness , 2016, Comput. Oper. Res..

[13]  Candace Arai Yano,et al.  Minimizing mean tardiness and earliness in single machine scheduling problems with unequal due-dates , 1994 .

[14]  Jeffrey E. Schaller,et al.  A comparison of lower bounds for the single-machine early/tardy problem , 2007, Comput. Oper. Res..

[15]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[16]  Jeffrey E. Schaller,et al.  A comparison of metaheuristic procedures to schedule jobs in a permutation flow shop to minimise total earliness and tardiness , 2013 .

[17]  V. Sridharan,et al.  Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review , 2000, Oper. Res..

[18]  J. Blackstone,et al.  Minimizing Weighted Absolute Deviation in Single Machine Scheduling , 1987 .

[19]  Chandrasekharan Rajendran,et al.  Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted flowtime, weighted tardiness and weighted earliness of jobs , 2009, J. Oper. Res. Soc..

[20]  Candace Arai Yano,et al.  Algorithms for a class of single-machine weighted tardiness and earliness problems , 1991 .