NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

[1]  Karen M. Feigh,et al.  Statistical Determination of Vertical Resolution Requirements for Real-Time Wake-Vortex Prediction , 2012 .

[2]  R. E. Robins,et al.  NWRA AVOSS Wake Vortex Prediction Algorithm. 3.1.1 , 2002 .

[3]  George F. Switzer,et al.  TASS Driven Algorithms for Wake Prediction , 2006 .

[4]  Turgut Sarpkaya,et al.  Wake-Vortex Eddy-Dissipation Model Predictions Compared with Observations , 2000 .

[5]  Donald P. Delisi,et al.  Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models , 2011 .

[6]  Fred H. Proctor,et al.  Evaluation of Fast-Time Wake Vortex Prediction Models , 2009 .

[7]  Fred H. Proctor,et al.  Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models , 2013 .

[8]  Rodney E. Cole,et al.  Aircraft Vortex Spacing System (AVOSS) Initial 1997 System Deployment at Dallas/Ft. Worth (DFW) Airport , 1998 .

[9]  Earl R. Booth,et al.  Aircraft Wake Vortex Measurements at Denver International Airport , 2004 .

[10]  Fred H. Proctor,et al.  Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground , 2000 .

[11]  G. C. Greene,et al.  An approximate model of vortex decay in the atmosphere , 1985 .

[12]  Fred H. Proctor,et al.  An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory , 2000 .

[13]  Donald P. Delisi,et al.  Atmospheric Turbulence Estimates from a Pulsed Lidar , 2013 .

[14]  David A. Hinton,et al.  NASA Wake Vortex Research for Aircraft Spacing , 1997 .

[15]  Robert E. Robins,et al.  Algorithm for Prediction of Trailing Vortex Evolution , 2001 .

[16]  Turgut Sarpkaya,et al.  New Model for Vortex Decay in the Atmosphere , 2000 .

[17]  David A. Hinton Description of Selected Algorithms and Implementation Details of a Concept-Demonstration Aircraft VOrtex Spacing System (AVOSS) , 2001 .

[18]  Donald P. Delisi,et al.  Assessment of Fast-Time Wake Vortex Prediction Models using Pulsed and Continuous Wave Lidar Observations at Several Different Airports , 2011 .