Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in 7 classes by 5

The fatty acid (FA) composition of algae is an important determinant of their food quality for consumers, and FAs can also be used as biomarkers for biochemical and energetic pathways in food webs. FA analyses of 7 freshwater algal classes and 37 strains showed clear sim- ilarity within classes and strong differences amongst classes. Class was a dominant factor (66.4%) explaining variation in FA signatures of microalgae. The 7 algal classes comprised 4 separate groups according to their FA profiles: (1) Chlorophyceae and Trebouxiophyceae, (2) Bacillario- phyceae, (3) Cryptophyceae, Chrysophyceae, and Raphidophyceae, and (4) Euglenophyceae. Each group had a characteristic FA composition, although the proportional abundance of individ- ual FAs also differed between species and with environmental conditions. FAs found to be partic- ularly representative for each group (i.e. diagnostic biomarkers) were as follows: 16:4ω3 and 16:3ω3 for Chlorophyceae and Trebouxiophyceae; 16:2ω7, 16:2ω4, 16:3ω4, 16:4ω1, and 18:4ω4 for Bacillariophyceae; 22:5ω6 and 18:4ω3 for Cryptophyceae and Chrysophyceae (Synurales), 16:3ω1 for Chrysophyceae (Ochromonadales), 16:2ω4, 16:3ω4, 16:3ω1, and 20:3ω3 for Raphidophyceae; and 15:4ω2, 20:4ω3, 20:2ω6, 20:3ω6, and 22:4ω6 for Euglenophyceae. FAs thus offer a powerful tool to track different consumer diets in a lacustrine food web. Based on the 20:5ω3 (eicosapen- taenoic acid) and 22:6ω3 (docosahexaenoic acid) content among the investigated freshwater algal classes, Chlorophyceae, Trebouxiophyceae, and Chrysophyceae are of intermediate food quality for zooplankton, and Cryptophyceae, Bacillariophyceae, Euglenophyceae, and Raphidophyceae should be excellent resources for zooplankton.

[1]  D. Martin‐Creuzburg,et al.  Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. , 2014, Ecology.

[2]  M. Brett,et al.  The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. , 2012, FEMS microbiology ecology.

[3]  M. Brett,et al.  FATTY ACID SIGNATURES DIFFERENTIATE MARINE MACROPHYTES AT ORDINAL AND FAMILY RANKS 1 , 2012, Journal of phycology.

[4]  R. Jordan,et al.  Chrysophyceae and Synurophyceae , 2012 .

[5]  R. Scheibling,et al.  Fatty acids as dietary tracers in benthic food webs , 2012 .

[6]  M. Margis-Pinheiro,et al.  Biosynthesis of Triacylglycerols (TAGs) in plants and algae , 2011 .

[7]  M. Brett,et al.  Diet‐switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia , 2011 .

[8]  I. Feussner,et al.  Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection , 2011, BMC Plant Biology.

[9]  M. Schallenberg,et al.  A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods , 2011 .

[10]  N. Sushchik,et al.  Correlations between fatty acid composition of seston and zooplankton and effects of environmental parameters in a eutrophic Siberian reservoir , 2010 .

[11]  G. Hyndes,et al.  Differentiation of benthic marine primary producers using stable isotopes and fatty acids: Implications to food web studies , 2010 .

[12]  G. Arhonditsis,et al.  The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. , 2010, Ecology.

[13]  Hari Seshan,et al.  Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production , 2009, Proceedings of the National Academy of Sciences.

[14]  J. Harwood,et al.  The versatility of algae and their lipid metabolism. , 2009, Biochimie.

[15]  A. Wacker,et al.  Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids , 2009, Proceedings of the Royal Society B: Biological Sciences.

[16]  C. Parrish Essential Fatty Acids in Aquatic Food Webs , 2009 .

[17]  H. Hämäläinen,et al.  Seasonal shifts in the diet of lake zooplankton revealed by phospholipid fatty acid analysis , 2009 .

[18]  J. Harwood,et al.  Algal lipids and effect of the environment on their biochemistry , 2009 .

[19]  M. Brett,et al.  Crustacean Zooplankton Fatty Acid Composition , 2009 .

[20]  S. Iverson Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination , 2009 .

[21]  G. Kattner,et al.  Lipids in marine copepods: latitudinal characteristics and perspective to global warming , 2009 .

[22]  L. Hansson,et al.  Cell lysis of competitors and osmotrophy enhance growth of the bloom forming alga Gonyostomum semen , 2008 .

[23]  Raymond N. Gorley,et al.  PERMANOVA+ for PRIMER. Guide to software and statistical methods , 2008 .

[24]  L. Arvola,et al.  Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes , 2006 .

[25]  J. Kromkamp,et al.  Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition , 2006 .

[26]  A. Ballantyne,et al.  Daphnia fatty acid composition reflects that of their diet , 2006 .

[27]  M. Brett,et al.  Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction , 2006 .

[28]  Marti J. Anderson,et al.  Distance‐Based Tests for Homogeneity of Multivariate Dispersions , 2006, Biometrics.

[29]  J. Harwood,et al.  Lipids and lipid metabolism in eukaryotic algae. , 2006, Progress in lipid research.

[30]  Malcolm R. Brown,et al.  Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. , 2005, Phytochemistry.

[31]  J. Middelburg,et al.  Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary , 2005 .

[32]  M. T. Arts,et al.  Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels , 2004 .

[33]  C. Field,et al.  QUANTITATIVE FATTY ACID SIGNATURE ANALYSIS: A NEW METHOD OF ESTIMATING PREDATOR DIETS , 2004 .

[34]  G. Hallegraeff,et al.  Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae , 2002, Journal of Applied Phycology.

[35]  W. R. Demott The role of taste in food selection by freshwater zooplankton , 1986, Oecologia.

[36]  K. Lindström Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes , 1983, Hydrobiologia.

[37]  D. White,et al.  Determination of the sedimentary microbial biomass by extractible lipid phosphate , 2004, Oecologia.

[38]  Robert P. Wilson,et al.  Amino acids and proteins , 2003 .

[39]  Michael A. St. John,et al.  Fatty acid trophic markers in the pelagic marine environment. , 2003, Advances in marine biology.

[40]  E. Elert Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids , 2002 .

[41]  J. Smoot,et al.  Spatial and Seasonal Variation in a Reservoir Sedimentary Microbial Community as Determined by Phospholipid Analysis , 2001, Microbial Ecology.

[42]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[43]  M. T. Arts,et al.  "Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution , 2001 .

[44]  J. G. Bell,et al.  Recent developments in the essential fatty acid nutrition of fish , 1999 .

[45]  C. Parrish Determination of Total Lipid, Lipid Classes, and Fatty Acids in Aquatic Samples , 1999 .

[46]  R. Evershed,et al.  Monitoring the Routing of Dietary and Biosynthesised Lipids Through Compound – Specific Stable Isotope (δ13C) Measurements at Natural Abundance , 1997, Naturwissenschaften.

[47]  S. Wakeham Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean , 1995 .

[48]  Etsuko Takizawa,et al.  Changes in lipid and fatty acid composition of Pavlova lutheri , 1995 .

[49]  H. Harvey,et al.  Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa , 1995 .

[50]  J. Cloern,et al.  Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay , 1995 .

[51]  S. M. Barrett,et al.  Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae) , 1993 .

[52]  J. Marty,et al.  Fatty acids from 28 marine microalgae , 1993 .

[53]  Takeshi Watanabe Importance of Docosahexaenoic Acid in Marine Larval Fish , 1993 .

[54]  Graeme A. Dunstan,et al.  Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids , 1992 .

[55]  I. Gustafsson,et al.  FATTY ACID CONTENT AND CHEMICAL COMPOSITION OF FRESHWATER MICROALGAE 1 , 1992 .

[56]  T. Kaneda,et al.  Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. , 1991, Microbiological reviews.

[57]  J. Bowman,et al.  Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane‐utilizing bacteria , 1991 .

[58]  J. Harwood,et al.  Lipid Metabolism in Algae , 1989 .

[59]  G. Jaworski,et al.  Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa , 1988 .

[60]  G. Jaworski,et al.  Lipids of four species of freshwater chrysophytes , 1988 .

[61]  G. Hallegraeff,et al.  Sterols and fatty acids of the red tide flagellates Heterosigma akashiwo and Chattonella antiqua (Raphidophyceae) , 1987 .

[62]  J. B. Guckert,et al.  Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts , 1986 .

[63]  T. Bott,et al.  Bacterial Biomass, Metabolic State, and Activity in Stream Sediments: Relation to Environmental Variables and Multiple Assay Comparisons , 1985, Applied and environmental microbiology.

[64]  D. Vance,et al.  Biochemistry of Lipids and Membranes , 1985 .

[65]  G. Kattner,et al.  Development of lipids during a spring plankton bloom in the northern North Sea: I. Particulate fatty acids , 1983 .

[66]  R. S. Stemberger A General Approach to the Culture of Planktonic Rotifers , 1981 .

[67]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[68]  R. Guillard,et al.  YELLOW‐GREEN ALGAE WITH CHLOROPHYLLIDE C 1, 2 , 1972 .

[69]  Richard F. Lee,et al.  Importance of wax esters and other lipids in the marine food chain: Phytoplankton and copepods , 1971 .

[70]  J. Mclachlan,et al.  Marine Phytoplankter Fatty Acids , 1968 .

[71]  E. Korn The fatty acids of Euglena gracilis. , 1964, Journal of lipid research.