Determination of Glycan Structure from Tandem Mass Spectra

Glycans are molecules made from simple sugars that form complex tree structures. Glycans constitute one of the most important protein modifications and identification of glycans remains a pressing problem in biology. Unfortunately, the structure of glycans is hard to predict from the genome sequence of an organism. In this paper, we consider the problem of deriving the topology of a glycan solely from tandem mass spectrometry (MS) data. We study, how to generate glycan tree candidates that sufficiently match the sample mass spectrum, avoiding the combinatorial explosion of glycan structures. Unfortunately, the resulting problem is known to be computationally hard. We present an efficient exact algorithm for this problem based on fixed-parameter algorithmics that can process a spectrum in a matter of seconds. We also report some preliminary results of our method on experimental data, combining it with a preliminary candidate evaluation scheme. We show that our approach is fast in applications, and that we can reach very well de novo identification results. Finally, we show how to count the number of glycan topologies for a fixed size or a fixed mass. We generalize this result to count the number of (labeled) trees with bounded out degree, improving on results obtained using Pólya's enumeration theorem.

[1]  Zsuzsanna Lipták,et al.  A Fast and Simple Algorithm for the Money Changing Problem , 2007, Algorithmica.

[2]  R Apweiler,et al.  On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. , 1999, Biochimica et biophysica acta.

[3]  Florian Rasche,et al.  Towards de novo identification of metabolites by analyzing tandem mass spectra , 2008, ECCB.

[4]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[5]  David Goldberg,et al.  Automatic determination of O-glycan structure from fragmentation spectra. , 2006, Journal of proteome research.

[6]  Haixu Tang,et al.  Automated interpretation of MS/MS spectra of oligosaccharides , 2005, ISMB.

[7]  A. Dell,et al.  Glycoprotein Structure Determination by Mass Spectrometry , 2001, Science.

[8]  Zsuzsanna Lipták,et al.  SIRIUS: decomposing isotope patterns for metabolite identification , 2008, Bioinform..

[9]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[10]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[11]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[12]  R. Geyer,et al.  Carbohydrate structure analysis of batroxobin, a thrombin-like serine protease from Bothrops moojeni venom. , 1995, European journal of biochemistry.

[13]  James Paulson,et al.  Automatic annotation of matrix‐assisted laser desorption/ionization N‐glycan spectra , 2005, Proteomics.

[14]  Bin Ma,et al.  Complexities and Algorithms for Glycan Structure Sequencing using Tandem Mass Spectrometry , 2007, APBC.

[15]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[16]  H. Perreault,et al.  Application of the StrOligo algorithm for the automated structure assignment of complex N-linked glycans from glycoproteins using tandem mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[17]  Alessio Ceroni,et al.  GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. , 2008, Journal of proteome research.

[18]  D. Ashline,et al.  Congruent strategies for carbohydrate sequencing. 3. OSCAR: an algorithm for assigning oligosaccharide topology from MSn data. , 2005, Analytical chemistry.

[19]  J. Zaia Mass spectrometry of oligosaccharides. , 2004, Mass spectrometry reviews.

[20]  J. Leary,et al.  STAT: a saccharide topology analysis tool used in combination with tandem mass spectrometry. , 2000, Analytical chemistry.

[21]  Bin Ma,et al.  Complexities and Algorithms for Glycan Sequencing Using Tandem Mass Spectrometry , 2008, J. Bioinform. Comput. Biol..

[22]  Claus-Wilhelm von der Lieth,et al.  GlycoFragment and GlycoSearchMS: web tools to support the interpretation of mass spectra of complex carbohydrates , 2004, Nucleic Acids Res..

[23]  B. Domon,et al.  A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates , 1988, Glycoconjugate Journal.

[24]  David Goldberg,et al.  Automated N-glycopeptide identification using a combination of single- and tandem-MS. , 2007, Journal of proteome research.

[25]  J. A. Taylor,et al.  Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. , 1997, Rapid communications in mass spectrometry : RCM.

[26]  Roded Sharan,et al.  Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks , 2006, J. Comput. Biol..

[27]  Ming-Yang Kao,et al.  A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry , 2000, SODA '00.

[28]  Catherine A. Cooper,et al.  GlycoMod – A software tool for determining glycosylation compositions from mass spectrometric data , 2001, Proteomics.

[29]  R. Otter The Number of Trees , 1948 .