Optimal State Estimation for Cavity Optomechanical Systems.

We demonstrate optimal state estimation for a cavity optomechanical system through Kalman filtering. By taking into account nontrivial experimental noise sources, such as colored laser noise and spurious mechanical modes, we implement a realistic state-space model. This allows us to obtain the conditional system state, i.e., conditioned on previous measurements, with a minimal least-squares estimation error. We apply this method to estimate the mechanical state, as well as optomechanical correlations both in the weak and strong coupling regime. The application of the Kalman filter is an important next step for achieving real-time optimal (classical and quantum) control of cavity optomechanical systems.

[1]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[2]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[3]  A. B. Manukin,et al.  Ponderomotive effects of electromagnetic radiation , 1967 .

[4]  R. Schnabel,et al.  Quantum state preparation and macroscopic entanglement in gravitational-wave detectors , 2009, 0903.0079.

[5]  Klemens Hammerer,et al.  Entanglement-enhanced time-continuous quantum control in optomechanics , 2014, 1411.1337.

[6]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[7]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[8]  Mohinder S Grewal,et al.  Applications of Kalman Filtering in Aerospace 1960 to the Present [Historical Perspectives] , 2010, IEEE Control Systems.

[9]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[10]  D. Vitali,et al.  Effect of phase noise on the generation of stationary entanglement in cavity optomechanics , 2011, 1106.0029.

[11]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[12]  Lee Samuel Finn,et al.  Data conditioning for gravitational wave detectors: A Kalman filter for regressing suspension violin modes , 2001 .

[13]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[14]  M. Pinard,et al.  High-sensitivity optical measurement of mechanical Brownian motion , 1999, quant-ph/9901056.

[15]  Markus Aspelmeyer,et al.  Laser noise in cavity-optomechanical cooling and thermometry , 2012, 1210.2671.

[16]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[17]  T. Briant,et al.  Optical phase-space reconstruction of mirror motion at the attometer level , 2002, quant-ph/0207049.

[18]  T. Palomaki,et al.  State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime , 2012, 1206.5562.

[19]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[20]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[21]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.

[22]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[23]  H. Carmichael An open systems approach to quantum optics , 1993 .

[24]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[25]  Karsten Danzmann,et al.  Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. , 2007, Physical review letters.

[26]  C. Regal,et al.  Observation of Radiation Pressure Shot Noise on a Macroscopic Object , 2012, Science.

[27]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[28]  D. Stamper-Kurn,et al.  Observation of quantum-measurement backaction with an ultracold atomic gas , 2007, 0706.1005.

[29]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[30]  M. Aspelmeyer,et al.  Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems , 2009, 0903.1637.

[31]  E H Huntington,et al.  Adaptive optical phase estimation using time-symmetric quantum smoothing. , 2009, Physical review letters.

[32]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[33]  C. Simon,et al.  Optomechanical entanglement in the presence of laser phase noise , 2011, 1106.0788.

[34]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[35]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[36]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[37]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[38]  Seth Lloyd,et al.  Quantum theory of optical temporal phase and instantaneous frequency , 2008 .

[39]  Hideo Mabuchi,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[40]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[41]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[42]  Seth Lloyd,et al.  Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time , 2008, 0902.3034.

[43]  A. Karimi,et al.  Master‟s thesis , 2011 .

[44]  Leonhardt Quantum statistics of a lossless beam splitter: SU(2) symmetry in phase space. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[45]  N. Mavalvala,et al.  Creation of a quantum oscillator by classical control , 2008, 0809.2024.

[46]  Mankei Tsang,et al.  Time-symmetric quantum theory of smoothing. , 2009, Physical review letters.

[47]  S. Gigan,et al.  Reconstructing the dynamics of a movable mirror in a detuned optical cavity , 2006 .

[48]  Hidehiro Yonezawa,et al.  Quantum-limited mirror-motion estimation. , 2013, Physical review letters.

[49]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[50]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[51]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[52]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.