Characterizations and recognition of circular-arc graphs and subclasses: A survey

Circular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations and recognition algorithms have been formulated for circular-arc graphs and its subclasses. In particular, it should be mentioned that linear time algorithms are known for all these classes of graphs. In the present paper, we survey these characterizations and recognition algorithms, with emphasis on the linear time algorithms.

[1]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[2]  Pavol Hell,et al.  Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..

[3]  F. Stahl,et al.  Circular genetic maps , 1967, Journal of cellular physiology.

[4]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[5]  Dale Skrien,et al.  A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs , 1982, J. Graph Theory.

[6]  Douglas B. West,et al.  Interval digraphs: An analogue of interval graphs , 1989, J. Graph Theory.

[7]  L. Guttman A basis for scaling qualitative data. , 1944 .

[8]  Lawrence Hubert,et al.  SOME APPLICATIONS OF GRAPH THEORY AND RELATED NON‐METRIC TECHNIQUES TO PROBLEMS OF APPROXIMATE SERIATION: THE CASE OF SYMMETRIC PROXIMITY MEASURES , 1974 .

[9]  Thomas Erlebach,et al.  Routing in all-optical ring networks revisited , 2004, Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No.04TH8769).

[10]  Haim Kaplan,et al.  Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs , 2009, Discret. Appl. Math..

[11]  K. Stoffers Scheduling of traffic lights—A new approach☆ , 1968 .

[12]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[13]  Jayme Luiz Szwarcfiter,et al.  Linear-Time Recognition of Helly Circular-Arc Models and Graphs , 2011, Algorithmica.

[14]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[15]  Wen-Lian Hsu,et al.  PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..

[16]  Beverly Sackler,et al.  Recognition of Circular-Arc Graphs and Some Subclasses , 2007 .

[17]  Pavol Hell,et al.  Tournament-like oriented graphs , 1992 .

[18]  Elaine Marie Eschen Circular-arc graph recognition and related problems , 1998 .

[19]  Alan Tucker,et al.  Circular arc graphs: New uses and a new algorithm , 1978 .

[20]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[21]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[22]  Jing Huang,et al.  On the Structure of Local Tournaments , 1995, J. Comb. Theory, Ser. B.

[23]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[24]  Pavol Hell,et al.  Two remarks on circular arc graphs , 1997, Graphs Comb..

[25]  Flavia Bonomo,et al.  Partial characterizations of circular‐arc graphs , 2008, J. Graph Theory.

[26]  Haim Kaplan,et al.  A Simpler Linear-Time Recognition of Circular-Arc Graphs , 2006, SWAT.

[27]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[28]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[29]  V. Klee,et al.  Combinatorial Geometry in the Plane , 1964 .

[30]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[31]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[32]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[33]  V. Klee What Are the Intersection Graphs of Arcs in a Circle , 1969 .

[34]  Douglas B. West,et al.  Circular-arc digraphs: A characterization , 1989, J. Graph Theory.

[35]  Stephen H. Unger,et al.  Minimizing the Number of States in Incompletely Specified Sequential Switching Functions , 1959, IRE Trans. Electron. Comput..

[36]  Jayme Luiz Szwarcfiter,et al.  Algorithms for clique-independent sets on subclasses of circular-arc graphs , 2006, Discret. Appl. Math..

[37]  Jeremy P. Spinrad,et al.  An O(n2 algorithm for circular-arc graph recognition , 1993, SODA '93.

[38]  Harold Fredricksen Generation of the Ford Sequence of Length 2n, n Large , 1972, J. Comb. Theory, Ser. A.

[39]  I. Rival Graphs and Order , 1985 .

[40]  Jayme Luiz Szwarcfiter,et al.  Efficient construction of unit circular-arc models , 2006, SODA '06.

[41]  Jeremy P. Spinrad,et al.  On the 2-Chain Subgraph Cover and Related Problems , 1994, J. Algorithms.

[42]  William T. Trotter,et al.  Characterization problems for graphs, partially ordered sets, lattices, and families of sets , 1976, Discret. Math..

[43]  Alan Tucker,et al.  Characterizing circular-arc graphs , 1970 .

[44]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[45]  Jayme Luiz Szwarcfiter,et al.  Unit Circular-Arc Graph Representations and Feasible Circulations , 2008, SIAM J. Discret. Math..

[46]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[47]  A. Tucker,et al.  A structure theorem for the consecutive 1's property☆ , 1972 .

[48]  Wen-Lian Hsu A Simple Test for the Consecutive Ones Property , 2002, J. Algorithms.

[49]  M. V. Nirkhe Efficient Algorithms for Circular-Arc Containment Graphs , 1987 .

[50]  Jayme Luiz Szwarcfiter,et al.  Proper Helly Circular-Arc Graphs , 2007, WG.

[51]  Ross M. McConnell A certifying algorithm for the consecutive-ones property , 2004, SODA '04.

[52]  Jayme Luiz Szwarcfiter,et al.  On cliques of Helly Circular-arc Graphs , 2008, Electron. Notes Discret. Math..

[53]  P. Hell,et al.  Interval bigraphs and circular arc graphs , 2004 .

[54]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[55]  Jeremy P. Spinrad,et al.  An O(n²) Algorithm for Undirected Split Decompositon , 1994, J. Algorithms.

[56]  Alan C. Tucker,et al.  An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..

[57]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[58]  Olivier Cogis,et al.  On the Ferrers dimension of a digraph , 1982, Discret. Math..

[59]  Giuseppe Confessore,et al.  An approximation result for a periodic allocation problem , 2001, Discret. Appl. Math..

[60]  Jeremy P. Spinrad Circular-arc graphs with clique cover number two , 1988, J. Comb. Theory, Ser. B.

[61]  Haiko Müller,et al.  Recognizing Interval Digraphs and Interval Bigraphs in Polynomial Time , 1997, Discret. Appl. Math..

[62]  Jayme Luiz Szwarcfiter,et al.  Characterizations and Linear Time Recognition of Helly Circular-Arc Graphs , 2006, COCOON.

[63]  F. Roberts Graph Theory and Its Applications to Problems of Society , 1987 .

[64]  Jayme Luiz Szwarcfiter,et al.  Algorithms for finding clique-transversals of graphs , 2008, Ann. Oper. Res..

[65]  Jørgen Bang-Jensen,et al.  Local Tournaments and Proper Circular Arc Gaphs , 1990, SIGAL International Symposium on Algorithms.

[66]  Jørgen Bang-Jensen,et al.  On chordal proper circular arc graphs , 1994, Discret. Math..

[67]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[68]  Vincent Conitzer,et al.  Combinatorial Auctions with Structured Item Graphs , 2004, AAAI.

[69]  Douglas B. West,et al.  Representing digraphs using intervals or circular arcs , 1995, Discret. Math..

[70]  Pavol Hell,et al.  Lexicographic orientation and representation algorithms for comparability graphs, proper circular arc graphs, and proper interval graphs , 1995, J. Graph Theory.

[71]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[72]  Guillermo Durán On some subclasses of circular-arc graphs , 2002 .

[73]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[74]  Jeremy P. Spinrad,et al.  Polynomial time recognition of unit circular-arc graphs , 2006, J. Algorithms.

[75]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[76]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .