A review of content-based image retrieval

A comprehensive survey on patch recognition, which is a crucial part of content-based image retrieval (CBIR), is presented. CBIR can be viewed as a methodology in which three correlated modules including patch sampling, characterizing, and recognizing are employed. This paper aims to evaluate meaningful models for one of the most challenging problems in image understanding, specifically, for the effective and efficient mapping between image visual features and high-level semantic concepts. To achieve this, the latest classification, clustering, and interactive methods have been meticulously discussed. Finally, several recommendations for future research issues have been suggested based on the weaknesses of recent technologies.

[1]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[2]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[3]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  S. M. H. Khan,et al.  Comparative Study on Content-Based Image Retrieval (CBIR) , 2012, 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT).

[5]  Arivazhagan Selvaraj,et al.  Texture segmentation using wavelet transform , 2003, Pattern Recognit. Lett..

[6]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[7]  Mohamed S. Kamel,et al.  Filter-Based Data Partitioning for Training Multiple Classifier Systems , 2010, IEEE Transactions on Knowledge and Data Engineering.

[8]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[10]  Yu-Jin Zhang Semantic-based visual information retrieval , 2006 .

[11]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  S. M. Patil,et al.  CONTENT BASED IMAGE RETRIEVAL USING COLOR, TEXTURE & SHAPE , 2012 .

[13]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[14]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Z WangJames,et al.  Real-Time Computerized Annotation of Pictures , 2008 .

[18]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[22]  Bo Zhang,et al.  Relevance feedback in region-based image retrieval , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[25]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[26]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[27]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[28]  Naphtali Rishe,et al.  Content-based image retrieval , 1995, Multimedia Tools and Applications.

[29]  Tat-Seng Chua,et al.  A bootstrapping approach to annotating large image collection , 2003, MIR '03.

[30]  James Ze Wang,et al.  Real-Time Computerized Annotation of Pictures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[32]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[33]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[35]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[36]  Hwann-Tzong Chen,et al.  Semantic manifold learning for image retrieval , 2005, ACM Multimedia.

[37]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Chin-Hui Lee,et al.  An Adaptive Image Content Representation and Segmentation Approach to Automatic Image Annotation , 2004, CIVR.

[39]  Matthieu Cord,et al.  Active Learning Methods for Interactive Image Retrieval , 2008, IEEE Transactions on Image Processing.

[40]  Lu Liu,et al.  Content-based image retrieval using color and texture fused features , 2011, Math. Comput. Model..

[41]  Peiqiang Zhang,et al.  Medical Image Retrieval based on co-occurrence martix and edge histogram , 2011, 2011 International Conference on Multimedia Technology.

[42]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Anton van den Hengel,et al.  Boosting Object Retrieval With Group Queries , 2012, IEEE Signal Processing Letters.

[44]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Ying Liu,et al.  Region-based image retrieval with high-level semantics using decision tree learning , 2008, Pattern Recognit..

[46]  Jingrui He,et al.  Mean version space: a new active learning method for content-based image retrieval , 2004, MIR '04.

[47]  Wei-Ying Ma,et al.  Locality preserving clustering for image database , 2004, MULTIMEDIA '04.

[48]  Aarti Kochhar,et al.  Content Based Image Retrieval using Texture, Color and Shape for Image Analysis , 2012, BIOINFORMATICS 2012.

[49]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Aidong Zhang,et al.  SemQuery: Semantic Clustering and Querying on Heterogeneous Features for Visual Data , 2002, IEEE Trans. Knowl. Data Eng..

[51]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Rong-Tai Chen,et al.  A smart content-based image retrieval system based on color and texture feature , 2009, Image Vis. Comput..

[53]  Yixin Chen,et al.  CLUE: cluster-based retrieval of images by unsupervised learning , 2005, IEEE Transactions on Image Processing.

[54]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[55]  Ching Y. Suen,et al.  Pattern Recognition. The Journal of the Pattern Recognition Society , 1968 .

[56]  Shih-Fu Chang,et al.  Semantic visual templates: linking visual features to semantics , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[57]  Jiebo Luo,et al.  Real-World Image Annotation and Retrieval: An Introduction to the Special Section , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Bir Bhanu,et al.  Integrating relevance feedback techniques for image retrieval using reinforcement learning , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.