High power density and improved H2 evolution reaction on MoO3/Activated carbon composite

[1]  Lianqing Zhu,et al.  An Ultrasensitive Silicon Photonic Ion Sensor Enabled by 2D Plasmonic Molybdenum Oxide. , 2019, Small.

[2]  Bin Wang,et al.  Synergetic coupling of Pd nanoparticles and amorphous MoS toward highly efficient electrocatalytic hydrogen evolution reactions , 2018, Applied Materials Today.

[3]  N. Kim,et al.  Fabrication of 3D graphene-CNTs/α-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life , 2018, Chemical Engineering Journal.

[4]  Muhammad Shahid Mehmood,et al.  Band engineered Al-rich InAlN thin films as a promising photoanode for hydrogen generation from solar water splitting , 2018, Solar Energy Materials and Solar Cells.

[5]  M. Selvakumar,et al.  Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions , 2018, Applied Surface Science.

[6]  M. Selvakumar,et al.  h-MoO3/Activated carbon nanocomposites for electrochemical applications , 2018, Ionics.

[7]  Bin Wang,et al.  Amorphous MoSx-Coated TiO2 Nanotube Arrays for Enhanced Electrocatalytic Hydrogen Evolution Reaction , 2018, The Journal of Physical Chemistry C.

[8]  Yongxiang Li,et al.  H+ Intercalation into Molybdenum Oxide Nanosheets Under AFM Tip Bias , 2018 .

[9]  Adam F. Chrimes,et al.  Degenerately Hydrogen Doped Molybdenum Oxide Nanodisks for Ultrasensitive Plasmonic Biosensing , 2018 .

[10]  D. Late,et al.  MoO3-rGO nanocomposites for electrochemical energy storage , 2017 .

[11]  I. Nova,et al.  Hydrogen-treated hierarchical titanium oxide nanostructures for photoelectrochemical water splitting , 2017 .

[12]  Jinglong Bai,et al.  Robust wire-based supercapacitors based on hierarchical α-MoO3 nanosheet arrays with well-aligned laminated structure , 2017 .

[13]  A. C. Bose,et al.  α-MnO2/h-MoO3 Hybrid Material for High Performance Supercapacitor Electrode and Photocatalyst , 2017 .

[14]  J. Jang,et al.  High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3 , 2017 .

[15]  M. Sathish,et al.  Shape dependence structural, optical and photocatalytic properties of TiO2 nanocrystals for enhanced hydrogen production via glycerol reforming , 2017 .

[16]  I. Shakir,et al.  Carbon Coated MoO3 Nanowires/Graphene oxide Ternary Nanocomposite for High-Performance Supercapacitors , 2016 .

[17]  Yan Wang,et al.  Nanorod structure of Polypyrrole-covered MoO3 for supercapacitors with excellent cycling stability , 2016 .

[18]  H. Zeng,et al.  Supercapacitor based on few-layer MoO3 nanosheets prepared by solvothermal method , 2016 .

[19]  Fang Dai,et al.  Polypyrrole@MoO3/reductive graphite oxide nanocomposites as anode material for aqueous supercapacitors with high performance , 2016 .

[20]  J. Coleman,et al.  An investigation of the energy storage properties of a 2D α-MoO3-SWCNTs composite films , 2016 .

[21]  C. Lokhande,et al.  Hexagonal microrods architectured MoO3 thin film for supercapacitor application , 2016, Journal of Materials Science: Materials in Electronics.

[22]  A. C. Bose,et al.  Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport , 2016 .

[23]  Benjamin J. Carey,et al.  Intercalated 2D MoS2 Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential , 2016 .

[24]  Sumanta Kumar Karan,et al.  High Energy Density Ternary Composite Electrode Material Based on Polyaniline (PANI), Molybdenum trioxide (MoO3) and Graphene Nanoplatelets (GNP) Prepared by Sono-Chemical Method and Their Synergistic Contributions in Superior Supercapacitive Performance , 2015 .

[25]  Pooi See Lee,et al.  Redox Active Polyaniline-h-MoO3 Hollow Nanorods for Improved Pseudocapacitive Performance , 2015 .

[26]  B. Yan,et al.  In Situ Preparation of Sandwich MoO3/C Hybrid Nanostructures for High‐Rate and Ultralong‐Life Supercapacitors , 2015 .

[27]  Benjamin J. Carey,et al.  Plasmon resonances of highly doped two-dimensional MoS₂. , 2015, Nano letters.

[28]  I. Shakir,et al.  Evaluation of Electrochemical Charge Storage Mechanism and Structural Changes in Intertwined MoO3–MWCNTs Composites for Supercapacitor Applications , 2014 .

[29]  T. Vaden,et al.  Molybdenum/graphene – Based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method , 2014 .

[30]  Hui Peng,et al.  Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts , 2014 .

[31]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[32]  Thomas M. Higgins,et al.  Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors , 2014 .

[33]  Xia Zhang,et al.  Investigation of a Branchlike MoO(3)/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. , 2014, ACS applied materials & interfaces.

[34]  Xiaoheng Liu,et al.  Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor , 2013 .

[35]  James R Friend,et al.  Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. , 2013, ACS nano.

[36]  Yuping Wu,et al.  Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors , 2013 .

[37]  S. Xie,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density , 2013 .

[38]  H. Park,et al.  Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors , 2013 .

[39]  L. S. Aravinda,et al.  Magnetron sputtered MoO3/carbon nanotube composite electrodes for electrochemical supercapacitor , 2013 .

[40]  Naiqing Zhang,et al.  Porous MoO3 films with ultra-short relaxation time used for supercapacitors , 2013 .

[41]  P. Grant,et al.  An Investigation of Nanostructured Thin Film α-MoO3 Based Supercapacitor Electrodes in an Aqueous Electrolyte , 2013 .

[42]  You-nian Liu,et al.  Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution , 2013 .

[43]  Q. Hao,et al.  Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: Synthesis and properties , 2012 .

[44]  Grzegorz Lota,et al.  Novel insight into neutral medium as electrolyte for high-voltage supercapacitors , 2012 .

[45]  D. Kang,et al.  Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3–MWCNT nanocomposites , 2011 .

[46]  D. Qian,et al.  MoO3 nanowires as electrochemical pseudocapacitor materials. , 2011, Chemical communications.

[47]  Lili Liu,et al.  Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. , 2011, Chemical communications.

[48]  Yexiang Tong,et al.  ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[49]  D. Kang,et al.  Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices , 2010 .

[50]  J. Zou,et al.  α-MoO3 Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries , 2010 .

[51]  Liping Zhang,et al.  Structure, Optical, and Catalytic Properties of Novel Hexagonal Metastable h-MoO3 Nano- and Microrods Synthesized with Modified Liquid-Phase Processes , 2010 .

[52]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[53]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[54]  Yinjuan Xie,et al.  Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electrochromic Properties , 2009 .

[55]  X. Ni,et al.  Synthesis of metastable h-MoO3 by simple chemical precipitation , 2007 .

[56]  Zhifeng Yi,et al.  Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution , 2019, Journal of Materials Chemistry A.

[57]  H. Duan,et al.  Facile Synthesis of Graphene@NiO/MoO3 Composite Nanosheet Arrays for High-performance Supercapacitors , 2015 .

[58]  T. Tao,et al.  MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications , 2012 .