A bias-driven approach for automated design of operational amplifiers

This paper presents a transistor-level automation to perform component sizing, power optimization and layout generation for fully-differential operational amplifiers (op-amps). The design variables of the component sizing are bias voltages and bias currents. The free space of the variables is easy to be restricted by circuit constraints. A lookup-table-based scheme is presented to translate the variables into transistor dimensions without much preparing effort. The layout generation employs analog layout skills, such as device matching, dummy cell and guard ring, to have good quality.

[1]  Pradip Mandal,et al.  CMOS op-amp sizing using a geometric programming formulation , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  C.-J. Richard Shi,et al.  Multilevel symmetry-constraint generation for retargeting large analog layouts , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  C.-J. Richard Shi,et al.  IPRAIL - intellectual property reuse-based analog IC layout automation , 2003, Integr..

[4]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Denis Flandre,et al.  A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA , 1996, IEEE J. Solid State Circuits.

[6]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Willy Sansen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989, ESSCIRC '89: Proceedings of the 15th European Solid-State Circuits Conference.

[9]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Kurt Antreich,et al.  The sizing rules method for analog integrated circuit design , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[11]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..