On the black hole unitarity issue

I discuss features required for preserving unitarity in black hole decay and concepts underlying such a perspective. Unitarity requires that correlations extend on the scale of the horizon. I show, in a toy model inspired by string theories, that such correlations can indeed arise. The model suggests that, after a time of order 4M ln M following the onset of Hawking radiation, quantum effects could maintain throughout the decay a collapsing star within a Planck distance of its Schwarzschild radius. In this way information loss would be avoided. The concept of black hole ``complementarity'', which could reconcile these macroscopic departures from classical physics with the equivalence principle, is interpreted in terms of weak values of quantum operators.