Observation of persistent orientation of chiral molecules by a laser field with twisted polarization

Molecular chirality is an omnipresent phenomenon of fundamental significance in physics, chemistry, and biology. For this reason, the search for various techniques for enantioselective control, detection, and separation of chiral molecules is of particular importance. It has been recently predicted that laser fields with twisted polarization may induce a persistent enantioselective field-free orientation of chiral molecules. Here, we report an experimental observation of this phenomenon using propylene oxide molecules (${\mathrm{CH}}_{3}{\mathrm{CHCH}}_{2}\mathrm{O}$, or PPO) spun by an optical centrifuge---a laser pulse---whose linear polarization undergoes an accelerated rotation around its propagation direction. We show that PPO molecules remain oriented on a timescale exceeding the duration of the centrifuge pulse by several orders of magnitude. The demonstrated long-time field-free enantioselective orientation may open new avenues for optical manipulation, discrimination, and, potentially, the separation of molecular enantiomers.

[1]  P. Brumer,et al.  Laser-induced persistent orientation of chiral molecules , 2019, Physical Review A.

[2]  J. Onvlee,et al.  Field-Induced Diastereomers for Chiral Separation. , 2019, Physical review letters.

[3]  I. Averbukh,et al.  Controlled Enantioselective Orientation of Chiral Molecules with an Optical Centrifuge. , 2019, Physical review letters.

[4]  Christiane P. Koch,et al.  Quantum control of molecular rotation , 2018, Reviews of Modern Physics.

[5]  M. Vrakking,et al.  Molecular movie of ultrafast coherent rotational dynamics of OCS , 2018, Nature Communications.

[6]  Haiyang Li,et al.  All-optical field-free three-dimensional orientation of asymmetric-top molecules , 2018, Nature Communications.

[7]  F. Billard,et al.  Polarization-based tachometer for measuring spinning rotors. , 2018, Optics express.

[8]  M. Vrakking,et al.  Molecular movie of ultrafast coherent rotational dynamics , 2018 .

[9]  I. Averbukh,et al.  Selective Orientation of Chiral Molecules by Laser Fields with Twisted Polarization. , 2017, The journal of physical chemistry letters.

[10]  I. Averbukh,et al.  Orienting Asymmetric Molecules by Laser Fields with Twisted Polarization. , 2017, Physical review letters.

[11]  A. Korobenko Control of molecular rotation with an optical centrifuge , 2017, Journal of Physics B: Atomic, Molecular and Optical Physics.

[12]  J. Zyss,et al.  Third-order-harmonic generation in coherently spinning molecules , 2017 .

[13]  P. Jensen,et al.  A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules , 2016, Physical chemistry chemical physics : PCCP.

[14]  Shimshon Kallush,et al.  Rotational Control of Asymmetric Molecules: Dipole- versus Polarizability-Driven Rotational Dynamics. , 2016, Physical review letters.

[15]  S. Yurchenko,et al.  Detecting Chirality in Molecules by Linearly Polarized Laser Fields. , 2016, Physical review letters.

[16]  Yuan-Pin Chang,et al.  Spatially-controlled complex molecules and their applications , 2015, 1505.05632.

[17]  F. Billard,et al.  Polarization shaping for unidirectional rotational motion of molecules. , 2015, Physical review letters.

[18]  J. Küpper,et al.  Two-state wave packet for strong field-free molecular orientation. , 2014, Physical review letters.

[19]  V. Milner,et al.  Direct observation, study, and control of molecular superrotors. , 2014, Physical review letters.

[20]  Sha Li,et al.  Terahertz-induced field-free orientation of rotationally excited molecules. , 2014, Physical review letters.

[21]  V. Milner,et al.  Rotational spectroscopy with an optical centrifuge. , 2013, Physical chemistry chemical physics : PCCP.

[22]  N. Ishii,et al.  Orientation of jet-cooled polar molecules with an intense single-cycle THz pulse , 2013 .

[23]  Sabre Kais,et al.  Manipulation of molecules with electromagnetic fields , 2013, 1306.0912.

[24]  R. Krems,et al.  TOPICAL REVIEW Manipulation of molecules with electromagnetic fields , 2013 .

[25]  I. Averbukh,et al.  Molecular spinning by a chiral train of short laser pulses , 2012, 1210.8335.

[26]  V. Milner,et al.  Directional spinning of molecules with sequences of femtosecond pulses , 2012, 1208.4345.

[27]  P. Corkum,et al.  Oriented rotational wave-packet dynamics studies via high harmonic generation. , 2012, Physical review letters.

[28]  Y. Prior,et al.  Molecular Alignment Induced by Ultrashort Laser Pulses and Its Impact on Molecular Motion , 2012 .

[29]  I. Averbukh,et al.  Control of molecular rotation with a chiral train of ultrashort pulses. , 2011, Physical review letters.

[30]  I. Averbukh,et al.  Deflection of rotating symmetric top molecules by inhomogeneous fields. , 2011, The Journal of chemical physics.

[31]  Yan Zhou,et al.  Molecular orientation and alignment by intense single-cycle THz pulses. , 2011, Physical review letters.

[32]  S. Teitelbaum,et al.  Dynamics of molecules in extreme rotational states , 2011, Proceedings of the National Academy of Sciences.

[33]  I. Averbukh,et al.  Electric deflection of rotating molecules. , 2010, The Journal of chemical physics.

[34]  Yasuhiro Ohshima,et al.  Coherent rotational excitation by intense nonresonant laser fields , 2010 .

[35]  Hirofumi Sakai,et al.  All-optical molecular orientation. , 2010, Physical review letters.

[36]  H. Zeng,et al.  Field-free molecular orientation control by two ultrashort dual-color laser pulses , 2010 .

[37]  K. Kitano,et al.  Ultrafast angular momentum orientation by linearly polarized laser fields. , 2009, Physical review letters.

[38]  Y. Prior,et al.  Controlling the sense of molecular rotation , 2009, 0907.5300.

[39]  I. Bocharova,et al.  Field-free orientation of CO molecules by femtosecond two-color laser fields. , 2009, Physical review letters.

[40]  K. Yamanouchi,et al.  Fixing chiral molecules in space by intense two-color phase-locked laser fields , 2008 .

[41]  Israel,et al.  Orientation of molecules via laser-induced antialignment , 2005, quant-ph/0509102.

[42]  D. Daems,et al.  Efficient and long-lived field-free orientation of molecules by a single hybrid short pulse. , 2005, Physical review letters.

[43]  Henrik Stapelfeldt,et al.  Colloquium: Aligning molecules with strong laser pulses , 2003 .

[44]  M. Machholm,et al.  Field-free orientation of molecules. , 2001, Physical review letters.

[45]  I. Averbukh,et al.  Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor. , 2001, Physical review letters.

[46]  T. Kanai,et al.  Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields , 2001, Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557).

[47]  M Spanner,et al.  Forced molecular rotation in an optical centrifuge. , 2000, Physical review letters.

[48]  Paul B. Corkum,et al.  Optical Centrifuge for Molecules , 1999 .

[49]  André D. Bandrauk,et al.  Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN , 1999 .

[50]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[51]  M. Vrakking,et al.  Coherent control of molecular orientation , 1997 .

[52]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[53]  Grischkowsky,et al.  THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay. , 1991, Physical review letters.

[54]  Richard N. Zare,et al.  Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics , 1988 .

[55]  F. Cotton Chemical Applications of Group Theory , 1971 .