Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation.

Antibiotics target ribosomes at distinct locations within functionally relevant sites. They exert their inhibitory action by diverse modes, including competing with substrate binding, interfering with ribosomal dynamics, minimizing ribosomal mobility, facilitating miscoding, hampering the progression of the mRNA chain, and blocking the nascent protein exit tunnel. Although the ribosomes are highly conserved organelles, they possess subtle sequence and/or conformational variations. These enable drug selectivity, thus facilitating clinical usage. The structural implications of these differences were deciphered by comparisons of high-resolution structures of complexes of antibiotics with ribosomal particles from eubacteria resembling pathogens and from an archaeon that shares properties with eukaryotes. The various antibiotic-binding modes detected in these structures demonstrate that members of antibiotic families possessing common chemical elements with minute differences might bind to ribosomal pockets in significantly different modes, governed by their chemical properties. Similarly, the nature of seemingly identical mechanisms of drug resistance is dominated, directly or via cellular effects, by the antibiotics' chemical properties. The observed variability in antibiotic binding and inhibitory modes justifies expectations for structurally based improved properties of existing compounds as well as for the discovery of novel drug classes.

[1]  D. Vazquez,et al.  Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes. , 1977, European journal of biochemistry.

[2]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[3]  D. Vazquez,et al.  Action of Sparsomycin on Ribosome-catalysed Peptidyl Transfer , 1969, Nature.

[4]  A. Mankin,et al.  Macrolide antibiotics: binding site, mechanism of action, resistance. , 2003, Current topics in medicinal chemistry.

[5]  A. Liljas,et al.  L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. , 2002, Journal of molecular biology.

[6]  S. Dorner,et al.  A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Su,et al.  Recent developments on ketolides and macrolides. , 2001, Current medicinal chemistry.

[8]  S. Zard,et al.  A flexible strategy for the divergent modification of pleuromutilin. , 2002, Chemical communications.

[9]  R. Leclercq,et al.  Denaturing High-Performance Liquid Chromatography Detection of Ribosomal Mutations Conferring Macrolide Resistance in Gram-Positive Cocci , 2004, Antimicrobial Agents and Chemotherapy.

[10]  J. Poehlsgaard,et al.  Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates , 2004, Molecular microbiology.

[11]  A. Mankin,et al.  Peptide‐mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel , 2004, Molecular microbiology.

[12]  M. Arthur,et al.  Multiplicity of macrolide-lincosamide-streptogramin antibiotic resistance determinants. , 1985, The Journal of antimicrobial chemotherapy.

[13]  E. Bingen,et al.  Emergence of Group A Streptococcus Strains with Different Mechanisms of Macrolide Resistance , 2002, Antimicrobial Agents and Chemotherapy.

[14]  A. Deblasio,et al.  A functional peptide encoded in the Escherichia coli 23S rRNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Ehrenberg,et al.  Regulatory Nascent Peptides in the Ribosomal Tunnel , 2002, Cell.

[16]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[17]  R. Garrett,et al.  Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Milligan,et al.  Location of exit channel for nascent protein in 80S ribosome , 1986, Nature.

[19]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[20]  S. Alvarez-Elcoro,et al.  The macrolides: erythromycin, clarithromycin, and azithromycin. , 1999, Mayo Clinic proceedings.

[21]  E. Böttger,et al.  Structural basis for selectivity and toxicity of ribosomal antibiotics , 2001, EMBO reports.

[22]  C. Spahn,et al.  Throwing a spanner in the works: antibiotics and the translation apparatus , 1996, Journal of Molecular Medicine.

[23]  J. Mao,et al.  Effects of macrolides on peptide-bond formation and translocation. , 1971, Biochemistry.

[24]  C. Kurland,et al.  Elongating ribosomes in vivo are refractory to erythromycin. , 1987, Biochimie.

[25]  B. Kerem,et al.  Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. , 2003, The New England journal of medicine.

[26]  V. Ramakrishnan,et al.  The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit , 2000, Cell.

[27]  D. D. Jaworski,et al.  Biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus. , 2001, The Journal of antimicrobial chemotherapy.

[28]  A. Mankin,et al.  Short peptides conferring resistance to macrolide antibiotics , 2001, Peptides.

[29]  D. Vazquez Protein Synthesis and Translation Inhibitors , 1979 .

[30]  E Westhof,et al.  Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. , 2001, Structure.

[31]  B. Vester,et al.  Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. , 2000, Journal of molecular biology.

[32]  S. Douthwaite,et al.  Macrolide Resistance Conferred by Base Substitutions in 23S rRNA , 2001, Antimicrobial Agents and Chemotherapy.

[33]  H. Egger,et al.  New pleuromutilin derivatives with enhanced antimicrobial activity.II.Structure-activity correlations. , 1976, The Journal of antibiotics.

[34]  Frank Schluenzen,et al.  Structural insight into the role of the ribosomal tunnel in cellular regulation , 2003, Nature Structural Biology.

[35]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[36]  C. Yanofsky,et al.  Instruction of Translating Ribosome by Nascent Peptide , 2002, Science.

[37]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[38]  A. Yonath,et al.  From peptide‐bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects , 2005, FEBS letters.

[39]  R. Berisio,et al.  Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide‐bond formation, chirality discrimination and antibiotics synergism , 2004, FEBS letters.

[40]  G. Högenauer The mode of action of pleuromutilin derivatives. Location and properties of the pleuromutilin binding site on Escherichia coli ribosomes. , 1975, European journal of biochemistry.

[41]  G. Tan,et al.  Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. , 1996, Journal of molecular biology.

[42]  Daniel N. Wilson,et al.  Ribosomal crystallography: peptide bond formation and its inhibition. , 2003, Biopolymers.

[43]  L. H. Hansen,et al.  The macrolide–ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA , 1999, Molecular microbiology.

[44]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[45]  J. Puglisi,et al.  Comparison of X-ray crystal structure of the 30S subunit-antibiotic complex with NMR structure of decoding site oligonucleotide-paromomycin complex. , 2003, Structure.

[46]  R. Zarivach,et al.  Structural basis for the antibiotic activity of ketolides and azalides. , 2003, Structure.

[47]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[48]  I. Goldberg,et al.  Sparsomycin, an inhibitor of aminoacyl transfer to polypeptide. , 1966, Biochemical and biophysical research communications.

[49]  J. Poehlsgaard,et al.  The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. , 2004, Journal of molecular biology.

[50]  T. Izard,et al.  The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism , 2000, The EMBO journal.

[51]  J. Poehlsgaard,et al.  Macrolide antibiotic interaction and resistance on the bacterial ribosome. , 2003, Current opinion in investigational drugs.

[52]  A. Bashan,et al.  Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. , 2004, Trends in biotechnology.

[53]  L. H. Hansen,et al.  Macrolide–ketolide inhibition of MLS‐resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA , 2000, Molecular microbiology.

[54]  J. Kolman,et al.  Activity of telithromycin compared with seven other agents against 1039 Streptococcus pyogenes pediatric isolates from ten centers in central and eastern Europe. , 2003, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[55]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[56]  A. Mankin,et al.  A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre , 1999, Molecular microbiology.

[57]  R. Garrett,et al.  Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. , 1999, Journal of molecular biology.

[58]  R. Miskin,et al.  The inactivation and reactivation of Escherichia coli ribosomes. , 1974, Methods in enzymology.

[59]  A. Rodloff,et al.  Drugs of the 21st century: telithromycin (HMR 3647)--the first ketolide. , 2003, The Journal of antimicrobial chemotherapy.

[60]  A. Kaji,et al.  Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A Yonath,et al.  A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. , 1987, Science.

[62]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .

[63]  H. Bartels,et al.  Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin , 2004, BMC Biology.

[64]  P. Zhong,et al.  The emerging new generation of antibiotic: ketolides. , 2001, Current drug targets. Infectious disorders.

[65]  B. Weisblum Erythromycin resistance by ribosome modification , 1995, Antimicrobial agents and chemotherapy.

[66]  C. Sigmund,et al.  Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. , 1984, Nucleic acids research.

[67]  W. S. Champney,et al.  Specific Inhibition of 50S Ribosomal Subunit Formation in Staphylococcus aureus Cells by 16-Membered Macrolide, Lincosamide, and Streptogramin B Antibiotics , 2000, Current Microbiology.

[68]  S. T. Gregory,et al.  Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. , 1999, Journal of molecular biology.

[69]  A. Yonath The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. , 2002, Annual review of biophysics and biomolecular structure.

[70]  A. Yonath,et al.  Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin , 2004, Molecular microbiology.

[71]  A. Mankin,et al.  Ketolide Resistance Conferred by Short Peptides* , 1998, The Journal of Biological Chemistry.

[72]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[73]  J Frank,et al.  The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. , 2001, Molecular cell.

[74]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[75]  Thomas A Steitz,et al.  After the ribosome structures: how does peptidyl transferase work? , 2003, RNA.

[76]  D. Otto,et al.  Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes , 1982, Antimicrobial Agents and Chemotherapy.

[77]  B. D. Davis,et al.  Selective action of erythromycin on initiating ribosomes. , 1974, Biochemistry.

[78]  B. Vester,et al.  The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome , 2001, Molecular microbiology.

[79]  A. Murchie,et al.  The bacterial ribosome, a promising focus for structure-based drug design. , 2002, Current opinion in pharmacology.

[80]  Frank Schluenzen,et al.  Antibiotics targeting ribosomes: crystallographic studies. , 2002, Current drug targets. Infectious disorders.

[81]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[82]  W. S. Champney,et al.  Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli , 1994, Journal of bacteriology.

[83]  S. Osawa,et al.  Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins , 1973, Molecular and General Genetics MGG.

[84]  Peter J McCormick,et al.  Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins , 2004, Cell.

[85]  S. Pereyre,et al.  Mutations in 23S rRNA Account for Intrinsic Resistance to Macrolides in Mycoplasma hominis and Mycoplasma fermentans and for Acquired Resistance to Macrolides in M. hominis , 2002, Antimicrobial Agents and Chemotherapy.

[86]  W. J. Robbins,et al.  Antibiotic Substances From Basidiomycetes: VIII. Pleurotus Multilus (Fr.) Sacc. and Pleurotus Passeckerianus Pilat. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[88]  R. Garrett,et al.  Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium , 1991, Journal of bacteriology.

[89]  J. Puglisi,et al.  Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[90]  R. Berisio,et al.  Functional aspects of ribosomal architecture: symmetry, chirality and regulation , 2004 .

[91]  R. Berisio,et al.  On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul. , 2003, European journal of biochemistry.

[92]  A. Mankin,et al.  Binding Site of Macrolide Antibiotics on the Ribosome: New Resistance Mutation Identifies a Specific Interaction of Ketolides with rRNA , 2001, Journal of bacteriology.

[93]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[94]  Måns Ehrenberg,et al.  The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. , 2003, Journal of molecular biology.

[95]  G. Högenauer,et al.  Affinity labeling of Escherichia coli ribosomes with a covalently binding derivative of the antibiotic pleuromutilin. , 1981, Biochemistry.

[96]  Poul Nissen,et al.  The structures of four macrolide antibiotics bound to the large ribosomal subunit. , 2002, Molecular cell.

[97]  A. Bashan,et al.  Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. , 2004, Annual review of microbiology.

[98]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[99]  R. Berisio,et al.  Structural Insight into the Antibiotic Action of Telithromycin against Resistant Mutants , 2003, Journal of bacteriology.

[100]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[101]  S. Douthwaite Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. , 1992, Nucleic acids research.

[102]  J. Hoogmartens,et al.  Macrolides, chemistry, pharmacology and clinical uses , 1993 .

[103]  Ramesh N. Patel,et al.  Synthesis and activity of a C-8 keto pleuromutilin derivative. , 2003, Bioorganic & Medicinal Chemistry Letters.