Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III. Helical magnetic fields in the nuclear outflow

Context. Magnetic fields are good tracers of gas compression by shock w aves in the interstellar medium. These can be caused by the interaction of star-formation driven outflows from individ ual star formation sites as described in the chimney model. Integration along the line-of-sight and cosmic-ray diffusion may hamper detection of compressed magnetic fields in m any cases. Aims. We study the magnetic field structure in the central part of th e nuclear starburst galaxy NGC 253 with spatial resolutions between 40 and 150 pc to detect any filamentary emission assoc iated with the nuclear outflow. As the nuclear region is much b righter than the rest of the disc we can distinguish this emission fro m that of the disc. Methods. We used radio polarimetric observations with the VLA. New observations at �3 cm with 7. ′′ 5 resolution were combined with archive data at �� 20 and 6 cm. We created a map of the rotation measure distribution between �� 6 and 3 cm and compared it with a synthetic polarization map. Results. We find filamentary radio continuum emission in a geometrical distribution, which we interpret as the boundary of the NW nuclear outflow cone seen in projection. The scaleheight o f the continuum emission is 150± 20 pc, regardless of the observing frequency. The equipartition magnetic field strength is 46 ± 10µG for the total field and 21± 5µG for the regular field in the filaments. We find that the ordered magnetic field is aligned along the fila ments, in agreement with amplification due to compression. T he perpendicular diffusion coeffi cient across the filaments is �⊥ = 1.5× 10 28 cm 2 s −1 · E(GeV) 0.5±0.7 . In the SE part of the nuclear outflow cone the magnetic field is pointing away from the disc in form o f a helix, with an azimuthal component increasing up to at least 1200 pc height, where it is about equal to the total component. The ordered magnetic field in the disc is anisotropic within a radius of 2.2 kpc. At larger radii, the large-scale field is regular and of even parity. Conclusions. The magnetic filaments indicate an interaction of the nuclea r outflow with the interstellar medium. The magnetic field is able to collimate the outflow, which can explain the observ ed small opening angle of≈ 26 ◦ . Owing to the conservation of angular momentum by the plasma in the nuclear outflow, the field lines a re frozen into the plasma, and they wind up into a helix. Strong adiabatic losses of the cosmic-ray electrons in the acceler ated outflow can partly explain why the radio luminosity of th e nucleus lies below the radio-FIR correlation.

[1]  S. O’Sullivan,et al.  Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets , 2009, 0907.5211.

[2]  D. Sokoloff,et al.  Depolarization and Faraday effects in galaxies , 1998 .

[3]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[4]  Gregory Dobler,et al.  THE FERMI HAZE: A GAMMA-RAY COUNTERPART TO THE MICROWAVE HAZE , 2009, 0910.4583.

[5]  D. Finkbeiner,et al.  GIANT GAMMA-RAY BUBBLES FROM FERMI-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND? , 2010, 1005.5480.

[6]  Ruhr-Universitát Bochum,et al.  Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 - II. The magnetic field structure , 2009, 0908.2985.

[7]  J. Hulst,et al.  H I in Barred Spiral Galaxies. I. NGC 1365 , 1989 .

[8]  J. Bland-Hawthorn,et al.  The Large-Scale Bipolar Wind in the Galactic Center , 2002, astro-ph/0208553.

[9]  Kraków,et al.  The characteristic polarized radio continuum distribution of cluster spiral galaxies , 2007, astro-ph/0701610.

[10]  T. Yamagami,et al.  Measurements of 0.2–20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer , 2006, astro-ph/0611388.

[11]  M. Brentjens,et al.  A CONSTRAINT ON THE ORGANIZATION OF THE GALACTIC CENTER MAGNETIC FIELD USING FARADAY ROTATION , 2011, 1102.2204.

[12]  E. Murphy,et al.  THE LOCAL RADIO–IR RELATION IN M51 , 2010, 1012.0212.

[13]  A. V. Karelin,et al.  Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. , 2011, Physical review letters.

[14]  C. Gissinger,et al.  Direct numerical simulations of the galactic dynamo in the kinematic growing phase , 2009, 0901.0403.

[15]  A. Lazarian,et al.  PERPENDICULAR DIFFUSION OF COSMIC RAYS FOR A GOLDREICH–SRIDHAR SPECTRUM , 2010 .

[16]  D. Finkbeiner,et al.  Extended Anomalous Foreground Emission in the WMAP Three-Year Data , 2007, 0712.1038.

[17]  T. M. Heckman,et al.  Chandra Observations of NGC 253. II. On the Origin of Diffuse X-Ray Emission in the Halos of Starburst Galaxies , 2001, astro-ph/0111511.

[18]  Timothy M. Heckman,et al.  Accepted for publication in the Astronomical Journal Preprint typeset using L ATEX style emulateapj v. 20/04/00 CHANDRA OBSERVATIONS OF NGC 253: NEW INSIGHTS INTO THE NATURE OF , 2000 .

[19]  M. Krause,et al.  High-resolution radio continuum survey of M 33. III Magnetic fields , 2008, 0809.0419.

[20]  Disc-halo interaction — I. Three-dimensional evolution of the Galactic disc , 2000, astro-ph/0001315.

[21]  E. Quataert,et al.  Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation , 2006, astro-ph/0601626.

[22]  Kraków,et al.  Magnetic fields in merging spirals - the Antennae , 2004, astro-ph/0401157.

[23]  T. Muxlow,et al.  Chimneys in the starburst galaxy M82 , 1999 .

[24]  A RIAF Interpretation for the Past Higher Activity of the Galactic Center Black Hole and the 511 keV Annihilation Emission , 2006, astro-ph/0607414.

[25]  Reinhard Schlickeiser,et al.  Cosmic Ray Astrophysics , 2002 .

[26]  D. Sokoloff,et al.  Regular magnetic fields in coronae of spiral galaxies , 1990, Nature.

[27]  A. Weiss,et al.  The Spectral Energy Distribution of CO lines in M82 , 2005, astro-ph/0504377.

[28]  D. H. Roberts,et al.  Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018 , 1999, astro-ph/9903330.

[29]  W. Beiglböck,et al.  Lecture Notes in Physics 1969–1985 , 1985 .

[30]  M. Westmoquette,et al.  Spatially resolved optical integral field unit spectroscopy of the inner superwind of NGC 253 , 2011, 1103.1775.

[31]  V. E. Yakimov,et al.  Spine–sheath polarization structures in four active galactic nuclei jets , 2005 .

[32]  Kraków,et al.  The influence of the cluster environment on the large-scale radio continuum emission of 8 Virgo cluster spirals , 2010, 1001.3597.

[33]  Satoru Ikeuchi,et al.  The disk-halo interaction - Superbubbles and the structure of the interstellar medium , 1989 .

[34]  F. Aharonian,et al.  Wild at Heart:-The Particle Astrophysics of the Galactic Centre , 2010, 1011.0206.

[35]  D. Breitschwerdt Astrophysics: Blown away by cosmic rays , 2008, Nature.

[36]  D. Gabuzda,et al.  Serendipitous VLBI observations of polarization intraday variability in three BL Lacertae objects , 2000 .

[37]  Abraham Loeb,et al.  ON THE GeV AND TeV DETECTIONS OF THE STARBURST GALAXIES M82 AND NGC 253 , 2010, 1003.3257.

[38]  S. Baum,et al.  ROTATION MEASURES ACROSS PARSEC-SCALE JETS OF FANAROFF-RILEY TYPE I RADIO GALAXIES , 2009, 0901.0913.

[39]  Dinshaw S. Balsara,et al.  DYNAMICS AND X-RAY EMISSION OF A GALACTIC SUPERWIND INTERACTING WITH DISK AND HALO GAS , 1994 .

[40]  B. Burn On the Depolarization of Discrete Radio Sources by Faraday Dispersion , 1965 .

[41]  M. Reid,et al.  Evidence of a pure starburst nature of the nuclear region of NGC 253 , 2009, 0902.1044.

[42]  D. Kazanas,et al.  THE INVARIANT TWIST OF MAGNETIC FIELDS IN THE RELATIVISTIC JETS OF ACTIVE GALACTIC NUCLEI , 2009, 0907.3619.

[43]  D. Iono,et al.  Molecular Superbubbles in the Starburst Galaxy NGC 253 , 2005, astro-ph/0509430.

[44]  C. Carilli,et al.  Discovery of a Synchrotron-emitting Halo around NGC 253 , 1992 .

[45]  E. Athanassoula The existence and shapes of dust lanes in galactic bars , 1992 .

[46]  R. Beck Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields , 2007, 0705.4163.

[47]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[48]  D. Sokoloff,et al.  Galactic Magnetism: Recent developments and perspectives , 1996 .

[49]  W. Pence A photometric and kinematic study of the barred spiral galaxy NGC 253. II. The velocity field. , 1981 .

[50]  S. Science,et al.  The Westerbork SINGS survey. III. Global magnetic field topology , 2010, 1002.1776.

[51]  A. R. Bazer-Bachi,et al.  Detection of Gamma Rays from a Starburst Galaxy , 2009, Science.

[52]  D. H. Roberts,et al.  A survey of the milliarcsecond polarization properties of BL Lacertae objects at 5 GHz , 1992 .

[53]  The Temperature Distribution of Dense Molecular Gas in the Center of NGC 253 , 2005, astro-ph/0505143.

[54]  V. N. Zirakashvili,et al.  Simple Model of the Outflow from Starburst Galaxies: Application to Radio Observations , 2006 .

[55]  Diffuse Ionized Gas in Three Sculptor Group Galaxies , 1996, astro-ph/9607048.

[56]  C. Law A MULTIWAVELENGTH VIEW OF A MASS OUTFLOW FROM THE GALACTIC CENTER , 2009, 0911.2061.

[57]  Analysis of spiral arms using anisotropic wavelets: gas, dust and magnetic fields in M51 , 2006, astro-ph/0609787.

[58]  R. Beck Galactic dynamos and galactic winds , 2007, 0711.4700.

[59]  F. Ipavich Galactic winds driven by cosmic rays , 1975 .

[60]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[61]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[62]  Astronomy,et al.  Cosmic-ray-driven dynamo in galactic disks. A parameter study , 2008, 0812.3906.

[63]  October I Physical Review Letters , 2022 .

[64]  C. Horellou,et al.  Magnetic fields and spiral arms in the galaxy M51 , 2010, 1001.5230.

[65]  M. Krause,et al.  The large scale magnetic field structure of the spiral galaxy NGC 5775 , 2011, 1105.5259.

[66]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[67]  W. Cotton,et al.  Radio Sources and Star Formation in the Local Universe , 2002 .

[68]  James S. Ulvestad,et al.  VLA Observations of NGC 253: Supernova Remnants and H II Regions at 1 Parsec Resolution , 1997 .

[69]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[70]  J. Stil,et al.  A ROTATION MEASURE IMAGE OF THE SKY , 2009 .

[71]  M. Kramer,et al.  New pulsar rotation measures and the Galactic magnetic field , 2008, 0803.0677.

[72]  Thomas J. Chester,et al.  The 2MASS Large Galaxy Atlas , 2001 .

[73]  P. W. Hodge,et al.  Distances to nearby galaxies in Sculptor , 2003, astro-ph/0302045.

[74]  R. Beck,et al.  The polarized disk in M 31 at lambda 6 cm , 2003 .

[75]  E. Zweibel,et al.  THE ROLE OF THE MAGNETIC FIELD IN THE INTERSTELLAR MEDIUM OF THE POST-STARBURST DWARF IRREGULAR GALAXY NGC 1569 , 2010, 1002.2375.

[76]  T. Heckman,et al.  Absorption-Line Probes of Gas and Dust in Galactic Superwinds , 2000, astro-ph/0002526.

[77]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.