Blind equalization based on fourth-order cumulants

This paper addresses the problem of blind equalization based on Higher-Order statistics. In fact, we propose a new method for blind identification which uses only fourth order cumulants. The Channel impulse response coefficients are obtained by using a least squares method. Next, we exploit this method in the context of blind equalization. Numerical examples are also presented in order to illustrate the performances of the proposed method.

[1]  A. P. Clark,et al.  Equalizers for digital modems , 1985 .

[2]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[3]  J. Lacoume,et al.  Statistiques d'ordre supérieur pour le traitement du signal , 1997 .

[4]  K. V. S. Hari,et al.  FIR system identification using higher order cumulants-a generalized approach , 1995, IEEE Trans. Signal Process..

[5]  Dieter Boss,et al.  Is blind channel estimation feasible in mobile communication systems? A study based on GSM , 1998, IEEE J. Sel. Areas Commun..

[6]  Doulaye Dembele Identification de modeles arma lineaires a l'aide de statistiques d'ordre eleve. Application a l'egalisation aveugle , 1995 .

[7]  Pierre Comon,et al.  MA identification using fourth order cumulants , 1992, Signal Process..

[8]  Steve McLaughlin,et al.  MA parameter estimation and cumulant enhancement , 1996, IEEE Trans. Signal Process..

[9]  Karl-Dirk Kammeyer,et al.  Improved methods for the blind system identification using higher order statistics , 1992, IEEE Trans. Signal Process..

[10]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[11]  José A. R. Fonollosa,et al.  System identification using a linear combination of cumulant slices , 1993, IEEE Trans. Signal Process..

[12]  Gérard Favier,et al.  Une nouvelle méthode d'identification de modèles RIF à l'aide de cumulants d'ordre quatre. application à l'égalisation de canal , 1995 .

[13]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..