Nedd4-1 regulates human sodium-dependent vitamin C transporter-2 functional expression in neuronal and epithelial cells.

[1]  M. Kitazawa,et al.  Calsyntenin-3 interacts with the sodium-dependent vitamin C transporter-2 to regulate vitamin C uptake. , 2021, International journal of biological macromolecules.

[2]  M. Kitazawa,et al.  Effect of Lipopolysaccharide and TNFα on Neuronal Ascorbic Acid Uptake , 2021, Mediators of inflammation.

[3]  J. Marchant,et al.  Enteropathogenic Escherichia coli Infection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression , 2020, Digestive Diseases and Sciences.

[4]  E. Maspero,et al.  HECT E3 Ligases: A Tale With Multiple Facets , 2019, Front. Physiol..

[5]  P. Malhotra,et al.  Mechanisms of Niemann-Pick type C1 Like 1 protein degradation in intestinal epithelial cells. , 2019, American journal of physiology. Cell physiology.

[6]  S. Fulda,et al.  Visualizing ubiquitination in mammalian cells , 2019, EMBO reports.

[7]  A. Nencioni,et al.  Vitamin C, Aging and Alzheimer’s Disease , 2017, Nutrients.

[8]  D. Meierhofer,et al.  ρ0 Cells Feature De-Ubiquitination of SLC Transporters and Increased Levels and Fluxes of Amino Acids , 2017, International journal of molecular sciences.

[9]  Da Xu,et al.  The role of Nedd4-1 WW domains in binding and regulating human organic anion transporter 1. , 2016, American journal of physiology. Renal physiology.

[10]  S. Pan,et al.  Protective effects and mechanisms of Ndfipl on SH-SY5Y cell apoptosis in an in vitro Parkinson's disease model. , 2016, Genetics and molecular research : GMR.

[11]  Marisa S Goo,et al.  Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1 , 2016, The Journal of Neuroscience.

[12]  K. Linton,et al.  The multidrug resistance pump ABCB1 is a substrate for the ubiquitin ligase NEDD4-1 , 2015, Molecular membrane biology.

[13]  F. Polleux,et al.  Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth , 2014, Proceedings of the National Academy of Sciences.

[14]  C. Yun,et al.  Unique Regulation of Human Na+/H+ Exchanger 3 (NHE3) by Nedd4-2 Ligase That Differs from Non-primate NHE3s* , 2014, The Journal of Biological Chemistry.

[15]  M. Nakao,et al.  Lys-63-linked Ubiquitination by E3 Ubiquitin Ligase Nedd4-1 Facilitates Endosomal Sequestration of Internalized α-Synuclein* , 2014, The Journal of Biological Chemistry.

[16]  H. Zhang,et al.  NEDD4-1 Regulates Migration and Invasion of Glioma Cells through CNrasGEF Ubiquitination In Vitro , 2013, PloS one.

[17]  J. Lott,et al.  Structure and dynamics of human Nedd4-1 WW3 in complex with the αENaC PY motif. , 2013, Biochimica et biophysica acta.

[18]  M. Hediger,et al.  The sodium-dependent ascorbic acid transporter family SLC23. , 2013, Molecular aspects of medicine.

[19]  Jing Jing Li,et al.  Upregulation of the E3 ligase NEDD4-1 by Oxidative Stress Degrades IGF-1 Receptor Protein in Neurodegeneration , 2012, The Journal of Neuroscience.

[20]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[21]  A. Simonin,et al.  Nedd4-1 and β-Arrestin-1 Are Key Regulators of Na+/H+ Exchanger 1 Ubiquitylation, Endocytosis, and Function* , 2010, The Journal of Biological Chemistry.

[22]  Christian Rosenmund,et al.  Regulation of Rap2A by the Ubiquitin Ligase Nedd4-1 Controls Neurite Development , 2010, Neuron.

[23]  J. Marchant,et al.  Molecular determinants dictating cell surface expression of the human sodium-dependent vitamin C transporter-2 in human liver cells. , 2010, American journal of physiology. Gastrointestinal and liver physiology.

[24]  A. Weissman,et al.  Nedd4 Mediates Agonist-dependent Ubiquitination, Lysosomal Targeting, and Degradation of the β2-Adrenergic Receptor* , 2008, Journal of Biological Chemistry.

[25]  P. Snyder,et al.  Nedd4-2 Catalyzes Ubiquitination and Degradation of Cell Surface ENaC* , 2007, Journal of Biological Chemistry.

[26]  E. Weeber,et al.  Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity , 2007, Journal of neuroscience research.

[27]  X. Xia,et al.  Degradation of the Apical Sodium-dependent Bile Acid Transporter by the Ubiquitin-Proteasome Pathway in Cholangiocytes* , 2004, Journal of Biological Chemistry.

[28]  L. Schild,et al.  Affinity and Specificity of Interactions between Nedd4 Isoforms and the Epithelial Na+ Channel* , 2003, Journal of Biological Chemistry.

[29]  W. Mitch,et al.  ENaC Degradation in A6 Cells by the Ubiquitin-Proteosome Proteolytic Pathway* , 2001, The Journal of Biological Chemistry.

[30]  Kang Hu,et al.  High-Level Neuronal Expression of Aβ1–42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation , 2000, The Journal of Neuroscience.

[31]  H. Man,et al.  Amyloid-β Induces AMPA Receptor Ubiquitination and Degradation in Primary Neurons and Human Brains of Alzheimer's Disease. , 2018, Journal of Alzheimer's disease : JAD.

[32]  J. M. May Vitamin C transport and its role in the central nervous system. , 2012, Sub-cellular biochemistry.

[33]  F. Harrison A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease. , 2012, Journal of Alzheimer's disease : JAD.

[34]  D. Rotin,et al.  Role of the ubiquitin system in regulating ion transport , 2010, Pflügers Archiv - European Journal of Physiology.

[35]  John Parkinson,et al.  Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays , 2009, Molecular systems biology.