Materials challenges toward proton-conducting oxide fuel cells: a critical review.

The increasing world population and the need to improve quality of life for a large percentage of human beings are the driving forces for the search for sustainable energy production systems, alternative to fossil fuel combustion. Among the various types of alternative energy production technologies, solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 °C) show the advantage of possible use both for stationary and mobile energy production. To reach the goal of reducing the SOFC operating temperature, proton-conducting oxides are gaining wide interest as electrolyte materials. This critical review provides a broad overview of the most recent progresses obtained tailoring the properties of proton-conducting oxides for fuel cell applications, analyzing and comparing the different strategies proposed to match high-proton conductivity with good chemical stability (170 references).

[1]  W. L. Worrell,et al.  Electrochemical Characterization of Mixed Conducting Ba(Ce0.8−y Pr y Gd0.2)O2.9 Cathodes , 2001 .

[2]  S. Licoccia,et al.  Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) , 2008 .

[3]  Sun-Ju Song,et al.  Mixed pronton–electron conducting properties of Yb doped strontium cerate , 2007 .

[4]  N. Bonanos,et al.  Water vapour solubility and conductivity study of the proton conductor BaCe(0.9―x)ZrxY0.1O(3―δ) , 2009 .

[5]  S. Haile,et al.  Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake , 2008 .

[6]  S. Haile,et al.  Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions , 1999 .

[7]  Jingli Luo,et al.  ZnO-doped BaZr0.85Y0.15O3−δ proton-conducting electrolytes: Characterization and fabrication of thin films , 2009 .

[8]  R. Cervera,et al.  Structural study and proton transport of bulk nanograined Y-doped BaZrO3 oxide protonics materials , 2008 .

[9]  Guilin Ma,et al.  Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α , 1998 .

[10]  Heesung Yoon,et al.  High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells , 2009 .

[11]  J. M. Serra,et al.  Preparation of proton conducting BaCe0.8Gd0.2O3 thin films , 2006 .

[12]  Bin Lin,et al.  High performance proton-conducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3−δ–Ce0.8Sm0.2O2−δ composite cathode , 2010 .

[13]  E. Wachsman,et al.  Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes , 2009 .

[14]  Anil V. Virkar,et al.  Stability of BaCeO3‐Based Proton Conductors in Water‐Containing Atmospheres , 1999 .

[15]  H. Matsumoto,et al.  Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate , 2008 .

[16]  Sossina M. Haile,et al.  Enhanced Sintering of Yttrium‐Doped Barium Zirconate by Addition of ZnO , 2005 .

[17]  N. Bonanos Oxide-based protonic conductors: point defects and transport properties , 2001 .

[18]  J. Irvine,et al.  Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C , 2007 .

[19]  G. Meng,et al.  High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode , 2009 .

[20]  G. Meng,et al.  A stable and easily sintering BaCeO3-based proton-conductive electrolyte , 2009 .

[21]  Z. Samardz̆ija,et al.  Solid Solubility of Neodymium in BaCeO3 , 2005 .

[22]  S. D. Souza Thin-film solid oxide fuel cell with high performance at low-temperature , 1997 .

[23]  M. Islam,et al.  Protons and other defects in BaCeO3: a computational study , 1999 .

[24]  Y. Awakura,et al.  Sintering Properties of Trivalent Cation-Doped Barium Zirconate at 1600 ° C , 2007 .

[25]  Masaharu Hatano,et al.  Ba(Zr0.1Ce0.7Y0.2)O3–δ as an Electrolyte for Low‐Temperature Solid‐Oxide Fuel Cells , 2006 .

[26]  T. Hibino,et al.  Electrochemical methane coupling using protonic conductors , 1993 .

[27]  Zongping Shao,et al.  A thermally self-sustained micro solid-oxide fuel-cell stack with high power density , 2005, Nature.

[28]  Zongping Shao,et al.  Evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ as a Potential Cathode for an Anode-Supported Proton-Conducting Solid-Oxide Fuel Cell , 2008 .

[29]  I. Kaus,et al.  High-Temperature Proton-Conducting Lanthanum Ortho-Niobate-Based Materials. Part II. Sintering Properties and Solubility of Alkaline Earth Oxides , 2008 .

[30]  F. Zhang,et al.  Proton Conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α , 2006 .

[31]  G. Meng,et al.  Chemical stability study of BaCe 0.9 Nd 0.1 O 3-α high-temperature proton-conducting ceramic , 1997 .

[32]  Z. Zhong Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems , 2007 .

[33]  Shigeki Matsuo,et al.  A conductivity and thermal gravimetric analysis of a Y-doped SrZrO3 single crystal , 1997 .

[34]  Truls Norbya Proton conduction in oxides , 1990 .

[35]  S. Loridant,et al.  Phase transitions in BaCeO3: neutron diffraction and Raman studies , 1999 .

[36]  J. Canales‐Vázquez,et al.  Investigation of proton conducting BaZr0.9Y0.1O2.95 : BaCe0.9Y0.1O2.95 core–shell structures , 2005 .

[37]  Mao Zongqiang,et al.  Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film , 2006 .

[38]  U. Balachandran,et al.  The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping , 2000 .

[39]  K. Nielsen,et al.  Crystal structure of the high-temperature protonic conductor SrCeO3 , 1994 .

[40]  G. Seifert,et al.  A quantum molecular dynamics study of the cubic phase of BaTiO3 and BaZrO3 , 1997 .

[41]  T. Omata,et al.  O–H stretching vibrations of proton conducting alkaline-earth zirconates , 2004 .

[42]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[43]  K. Knight,et al.  The crystal structures of some doped and undoped alkaline earth cerate perovskites , 1995 .

[44]  H. Schober,et al.  Investigation of the hydrogen mobility in a mixed perovskite: Ba[Ca(1+x)/3Nb(2−x)/3]O3−x/2 by quasielastic neutron scattering , 1997 .

[45]  Jingli Luo,et al.  Stability and Electric Conductivity of Barium Cerate Perovskites Co-Doped with Praseodymium , 2008 .

[46]  Masatsugu Oishi,et al.  Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3: Part 2: The electrical conductivity and diffusion coefficient of BaCe0.9Y0.1O3 − δ , 2008 .

[47]  G. Seifert,et al.  A quantum molecular dynamics study of proton conduction phenomena in BaCeO3 , 1996 .

[48]  Y. Larring,et al.  Hydrogen in oxides. , 2004, Dalton transactions.

[49]  Yang Zhou,et al.  In situ screen-printed BaZr0.1Ce0.7Y0.2O3−δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode , 2009 .

[50]  B. Lebech,et al.  Neutron diffraction investigation of the atomic defect structure of Y-doped SrCeO3, a high-temperature protonic conductor , 1995 .

[51]  J. M. Serra,et al.  Thin-film proton BaZr0.85Y0.15O3 conducting electrolytes : Toward an intermediate-temperature solid oxide fuel cell alternative , 2007 .

[52]  U. Stimming,et al.  Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3 − δ , 2008 .

[53]  G. Lucazeau,et al.  Raman scattering study of acceptor-doped BaCeO3 , 1993 .

[54]  S. Licoccia,et al.  Fabrication and Electrochemical Properties of Epitaxial Samarium‐Doped Ceria Films on SrTiO3‐Buffered MgO Substrates , 2009 .

[55]  F. Prinz,et al.  Proton conduction in thin film yttrium-doped barium zirconate , 2008 .

[56]  H. Iwahara,et al.  Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production , 1981 .

[57]  H. Iwahara,et al.  Polarization at Pt electrodes of a fuel cell with a high temperature-type proton conductive solid electrolyte , 1985 .

[58]  R. Slade,et al.  Systematic examination of hydrogen ion conduction in rare-earth doped barium cerate ceramics , 1991 .

[59]  J. Kato,et al.  Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors , 2001 .

[60]  Y. Nose,et al.  Improvement of Grain-Boundary Conductivity of Trivalent Cation-Doped Barium Zirconate Sintered at 1600°C by Co-doping Scandium and Yttrium , 2008 .

[61]  S. Haile,et al.  Processing of yttrium-doped barium zirconate for high proton conductivity , 2007 .

[62]  K. Kreuer,et al.  On the development of proton conducting materials for technological applications , 1997 .

[63]  Silvia Licoccia,et al.  Electrophoretic deposition of dense BaCe0.9Y0.1O3−x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells , 2009 .

[64]  G. C. Mather,et al.  Transport numbers and oxygen permeability of SrCe(Y)O3-based ceramics under oxidising conditions , 2006 .

[65]  V. Thangadurai,et al.  Synthesis and characterization of carbon dioxide and boiling water stable proton conducting double perovskite-type metal oxides , 2009 .

[66]  E. A. Wood Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds , 1951 .

[67]  J. Maier,et al.  H/D isotope effect of proton conductivity and proton conduction mechanism in oxides , 1995 .

[68]  K. Knight,et al.  Space group and lattice constants for barium cerate and minor corrections to the crystal structures of BaCe0.9Y0.1O2.95 and BaCe0.9Gd0.1O2.95 , 1994 .

[69]  Emiliana Fabbri,et al.  Design of BaZr0.8Y0.2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) , 2008 .

[70]  R. Cervera,et al.  Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method , 2007 .

[71]  B. Steele Materials for IT-SOFC stacks: 35 years R&D: the inevitability of gradualness? , 2000 .

[72]  Takashi Hibino,et al.  Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe[sub 1 [minus] x]Sm[sub x]O[sub 3 [minus] [alpha]] , 1993 .

[73]  Kevin S. Knight,et al.  Structural phase transitions, oxygen vacancy ordering and protonation in doped BaCeO3: results from time-of-flight neutron powder diffraction investigations , 2001 .

[74]  E. Djurado,et al.  The synthesis and sintering behaviour of BaZr0.9Y0.1O3−δ powders prepared by spray pyrolysis , 2009 .

[75]  G. Meng,et al.  Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode , 2009 .

[76]  E. Wachsman,et al.  Composite Cathodes for Proton Conducting Electrolytes , 2009 .

[77]  G. Meng,et al.  A novel layered perovskite cathode for proton conducting solid oxide fuel cells , 2010 .

[78]  K. Liang,et al.  High-temperature protonic conduction in mixed perovskite ceramics , 1993 .

[79]  M. Rȩkas,et al.  Structural, electrical and transport properties of yttrium-doped proton-conducting strontium cerates , 2007 .

[80]  K. Knight,et al.  Perovskite solid electrolytes: Structure, transport properties and fuel cell applications , 1995 .

[81]  H. Yahiro,et al.  Fabrication of BaCe0.8Y0.2O3 dense film on perovskite-type oxide electrode substrates , 2007 .

[82]  A. Manthiram,et al.  Characterization of oxygen-deficient perovskites as oxide-ion electrolytes , 1993 .

[83]  Deborah J. Jones,et al.  New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics , 2009 .

[84]  L. Bi,et al.  Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray , 2008 .

[85]  T. Tsurui,et al.  The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors , 2009 .

[86]  S. Haile,et al.  Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites , 2001 .

[87]  R. V. Kumar Electrical conducting properties of rare earth doped perovskites , 2006 .

[88]  B. Ellis,et al.  Construction and operation of fuel cells based on the solid electrolyte BaCeO3:Gd , 1991 .

[89]  T. Norby,et al.  High‐Temperature Proton Conductivity in Acceptor‐Substituted Rare‐Earth Ortho‐Tantalates, LnTaO4 , 2007 .

[90]  H. Iwahara,et al.  Protonic conduction in Zr-substituted BaCeO3 , 2000 .

[91]  R. Bredesen,et al.  Shaping of advanced asymmetric structures of proton conducting ceramic materials for SOFC and membrane-based process applications , 2009 .

[92]  T. Tsurui,et al.  The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor , 2006 .

[93]  H. Matsumoto,et al.  Introduction of In or Ga as second dopant to BaZr0.9Y0.1O3 − δ to achieve better sinterability , 2008 .

[94]  Srikanth Gopalan,et al.  Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells , 1993 .

[95]  C. Xia,et al.  Sm0.5Sr0.5CoO3 − δ–BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells , 2008 .

[96]  Wei Liu,et al.  A novel single phase cathode material for a proton-conducting SOFC , 2009 .

[97]  Wei Liu,et al.  Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells , 2009 .

[98]  M. Sano,et al.  ChemInform Abstract: Proton Conduction at the Surface of Y-Doped BaCeO3. , 2001 .

[99]  James H. White,et al.  Rational selection of advanced solid electrolytes for intermediate temperature fuel cells , 1992 .

[100]  John T. S. Irvine,et al.  Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3–δ electrolytes for fuel cells and other applications , 2005 .

[101]  G. Meng,et al.  In situ drop-coated BaZr0.1Ce0.7Y0.2O3−δ electrolyte-based proton-conductor solid oxide fuel cells with a novel layered PrBaCuFeO5+δ cathode , 2009 .

[102]  P. Nanni,et al.  Atomistic Simulation of Dopant Incorporation in Barium Titanate , 2004 .

[103]  H. Yahiro,et al.  Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell , 2005 .

[104]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[105]  N. Minh Ceramic Fuel Cells , 1993 .

[106]  J. Irvine,et al.  A Stable, Easily Sintered Proton‐ Conducting Oxide Electrolyte for Moderate‐Temperature Fuel Cells and Electrolyzers , 2006 .

[107]  Lei Bi,et al.  Preparation of an extremely dense BaCe0.8Sm0.2O3-δ thin membrane based on an in situ reaction , 2008 .

[108]  W. Liu,et al.  Fabrication and characterization of easily sintered and stable anode-supported proton-conducting membranes , 2009 .

[109]  K. Kimura,et al.  New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte , 2005 .

[110]  Meilin Liu,et al.  Transport properties of SrCe0.95Y0.05O3−δ and its application for hydrogen separation , 1998 .

[111]  Jingli Luo,et al.  Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2 , 2008 .

[112]  A. Magrez,et al.  Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3−δ: comparison between three different synthesis techniques , 2004 .

[113]  G. Meng,et al.  A stable and thin BaCe0.7Nb0.1Gd0.2O3−δ membrane prepared by simple all-solid-state process for SOFC , 2009 .

[114]  R. Hempelmann,et al.  BaZr0.85Me0.15O2.925 (Me=Y, In and Ga): crystal growth, high-resolution transmission electron microscopy, high-temperature X-ray diffraction and neutron scattering experiments , 2001 .

[115]  L. Johansson,et al.  Synthesis and structural characterization of perovskite type proton conducting BaZr1−xInxO3−δ (0.0 ≤ x ≤ 0.75) , 2006 .

[116]  T. Norby,et al.  Proton conduction in rare-earth ortho-niobates and ortho-tantalates , 2006 .

[117]  T. Norby Solid-state protonic conductors: principles, properties, progress and prospects , 1999 .

[118]  Wei Liu,et al.  Proton-conducting solid oxide fuel cells prepared by a single step co-firing process , 2009 .

[119]  Joachim Maier,et al.  Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications , 2001 .

[120]  S. Licoccia,et al.  Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) , 2008 .

[121]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[122]  K. Kreuer On the complexity of proton conduction phenomena , 2000 .

[123]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[124]  A. Matic,et al.  Short-range structure of proton-conducting perovskite BaInxZr1-xO3-x/2 (x=0-0.75) , 2008, 0802.0790.

[125]  H. Bohn,et al.  Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95 , 2004 .

[126]  A. Smith,et al.  Some mixed metal oxides of perovskite structure , 1960 .

[127]  K. Knight,et al.  Crystal structures of gadolinium- and yttrium-doped barium cerate , 1992 .

[128]  H. Iwahara,et al.  Effect of ionic radii of dopants on mixed ionic conduction (H++O2−) in BaCeO3-based electrolytes , 1994 .

[129]  J. Schoonman,et al.  Synthesis of strontium and barium cerate and their reaction with carbon dioxide , 1993 .

[130]  K. Amezawa,et al.  Protonic conduction in acceptor-doped LaP3O9 , 2005 .

[131]  S. Adams,et al.  The relation between crystal structure and the formation and mobility of protonic charge carriers in perovskite-type oxides: A case study of Y-doped BaCeO3 and SrCeO3 , 1999 .

[132]  J. Gale,et al.  Dopant and proton incorporation in perovskite-type zirconates , 1999 .

[133]  Deborah J. Jones,et al.  Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies , 2008 .

[134]  H. Wenzl,et al.  Defect model of proton insertion into oxides , 1996 .

[135]  L. P. Li,et al.  Defect chemistry and transport properties of Ba_xCe_0.85M_0.15O_3-δ , 2004 .

[136]  A. Boudghene Stambouli,et al.  Fuel cells, an alternative to standard sources of energy , 2002 .

[137]  A. Tiwari,et al.  Proton conducting BaZr0.8Y0.2O3−x thin films by pulsed laser deposition technique , 2008 .

[138]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[139]  F. Dynys,et al.  Laser processed protonic ceramics , 2008 .

[140]  N. Bonanos Transport properties and conduction mechanism in high-temperature protonic conductors , 1992 .

[141]  K. Knight Structural phase transitions in BaCeO3 , 1994 .

[142]  F. Henn,et al.  Characterization of Gd, Yb and Nd doped barium cerates as proton conductors , 1993 .

[143]  S. Licoccia,et al.  Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids , 2006 .

[144]  Meilin Liu,et al.  Stability of BaCe0.8Gd0.2 O 3 in a H 2 O ‐Containing Atmosphere at Intermediate Temperatures , 1997 .

[145]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[146]  Meilin Liu,et al.  A Novel Composite Cathode for Low‐Temperature SOFCs Based on Oxide Proton Conductors , 2008 .

[147]  A. Nowick,et al.  High-temperature protonic conductors with perovskite-related structures , 1995 .

[148]  H. Matsumoto,et al.  Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants , 2007 .

[149]  A. Azad,et al.  Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)1−x Scx O3 − δ , 2007 .

[150]  T. Shishido,et al.  Construction of fuel cells based on thin proton conducting oxide electrolyte and hydrogen-permeable metal membrane electrode , 2003 .

[151]  F. Snijkers,et al.  Proton conductivity and phase composition in BaZr0.9Y0.1O3-δ , 2004 .

[152]  A. Azad,et al.  Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association , 2008 .

[153]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[154]  K. Kreuer Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides , 1999 .

[155]  S. Singhal Solid oxide fuel cells for stationary, mobile, and military applications , 2002 .

[156]  S. Haile,et al.  Atomistic Study of Doped BaCeO3: Dopant Site-Selectivity and Cation Nonstoichiometry , 2005 .

[157]  Dimos Poulikakos,et al.  A micro-solid oxide fuel cell system as battery replacement , 2008 .

[158]  K. Kreuer,et al.  Dopants and defects: Local structure and dynamics in barium cerates and zirconates , 2010 .

[159]  M. Rȩkas,et al.  Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y , 2009 .

[160]  U. Stimming,et al.  Electrical conductivity of the proton conductor BaZr0.9Y0.1O3−δ obtained by high temperature annealing , 2007 .

[161]  S. Haile,et al.  The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate , 1997 .

[162]  H. Iwahara,et al.  Studies on solid electrolyte gas cells with high-temperature-type proton conductor and oxide ion conductor , 1983 .

[163]  M. Sano,et al.  A Solid Oxide Fuel Cell Using Y-Doped BaCeO3 with Pd-Loaded FeO Anode and Ba0.5Pr0.5CoO3 Cathode at Low Temperatures , 2002 .

[164]  H. Iwahara,et al.  Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures , 1983 .

[165]  G. Meng,et al.  Electrode materials for intermediate temperature proton-conducting fuel cells , 2000 .

[166]  D. Minichelli,et al.  X-ray characterization of SrCeO3 and BaCeO3 , 1981 .