Multiplicative noise, fast convolution and pricing

In this work we detail the application of a fast convolution algorithm to compute high-dimensional integrals in the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing conditional probability density functions at arbitrary times, and we apply it successfully to quadratic and piecewise linear diffusion processes. The ability to reproduce statistical features of financial return time series, such as thickness of the tails and scaling properties, makes these processes appealing for option pricing. Since exact analytical results are lacking, we exploit the fast convolution as a numerical method alternative to Monte Carlo simulation both in the objective and risk-neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in speed and efficiency terms.

[1]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[2]  G. Bormetti,et al.  Pricing exotic options in a path integral approach , 2004, cond-mat/0407321.

[3]  L. Borland A theory of non-Gaussian option pricing , 2002, cond-mat/0205078.

[4]  Martingale option pricing , 2006, physics/0606011.

[5]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[6]  Joseph L. McCauley Dynamics of markets : econophysics and finance , 2004 .

[7]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[8]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[9]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[10]  R. Gomory,et al.  Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume E , 1997 .

[11]  Oreste Nicrosini,et al.  A path integral way to option pricing , 2002 .

[12]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[13]  Rosario N. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[14]  On option pricing models in the presence of heavy tails , 2007 .

[15]  B. Baaquie Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates , 2004 .

[16]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[17]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[18]  Ljudmila A. Bordag,et al.  Explicit solutions for a nonlinear model of financial derivatives , 2006, math/0604117.

[19]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[20]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[21]  L. Borland Option pricing formulas based on a non-Gaussian stock price model. , 2002, Physical review letters.

[22]  J. Peinke,et al.  Description of a Turbulent Cascade by a Fokker-Planck Equation , 1997 .

[23]  Lisa Borland,et al.  Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .

[24]  Rama Cont,et al.  Comment on "Turbulent cascades in foreign exchange markets" , 1996, cond-mat/9607120.

[25]  A Theory of Fluctuations in Stock Prices , 2004, cond-mat/0409375.

[26]  X. Gabaix Power Laws in Economics and Finance , 2008 .

[27]  J. Bouchaud,et al.  Theory Of Financial Risk And Derivative Pricing , 2000 .

[28]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[29]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[30]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[31]  A. Eydeland A fast algorithm for computing integrals in function spaces: Financial applications , 1994 .

[32]  Włodarczyk,et al.  Interpretation of the nonextensivity parameter q in some applications of tsallis statistics and Levy distributions , 2000, Physical review letters.

[33]  Antal Jakovác,et al.  Power-law tails from multiplicative noise. , 2005, Physical review letters.

[34]  L. Borland A theory of non‐Gaussian option pricing , 2002 .

[35]  Exact moment scaling from multiplicative noise. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  W. Shaw,et al.  A model of returns for the post-credit-crunch reality: hybrid Brownian motion with price feedback , 2008, 0811.0182.

[37]  S. Chaudhary A SIMPLE AMERICAN OPTION PRICING METHOD USING THE FAST FOURIER TRANSFORM , 2007 .

[38]  Stefano M. Iacus,et al.  Simulation and Inference for Stochastic Differential Equations: With R Examples , 2008 .

[39]  Evert Wipplinger Philippe Jorion: Value at Risk – The New Benchmark for Managing Financial Risk , 2007 .

[40]  Kevin E. Bassler,et al.  Hurst exponents, Markov processes, and fractional Brownian motion , 2006, cond-mat/0609671.

[41]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[42]  F. Baldovin,et al.  Scaling and efficiency determine the irreversible evolution of a market , 2007, Proceedings of the National Academy of Sciences.

[43]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[44]  Giacomo Bormetti,et al.  A Non-Gaussian Approach to Risk Measures , 2007 .

[45]  C. Chiarella,et al.  Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques , 1997 .

[46]  Xavier Gabaix,et al.  Power Laws in Economics and Finance , 2009 .

[47]  Paolo Brandimarte,et al.  Numerical methods in finance and economics , 2013 .

[48]  Gemunu H. Gunaratne,et al.  An Empirical Model for Volatility of Returns and Option Pricing , 2002, ArXiv.

[49]  Giacomo Bormetti,et al.  Minimal model of financial stylized facts. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Friedrich,et al.  How to quantify deterministic and random influences on the statistics of the foreign exchange market , 1999, Physical review letters.

[51]  Joseph L. McCauley,et al.  Dynamics of Markets , 2004 .

[52]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[53]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[54]  Muhammad Sahimi,et al.  Analysis of Non-stationary Data for Heart-rate Fluctuations in Terms of Drift and Diffusion Coefficients , 2006, Journal of biological physics.

[55]  Marcel Urner Simulation And Inference For Stochastic Differential Equations With R Examples , 2016 .

[56]  Giacomo Bormetti,et al.  A generalized Fourier transform approach to risk measures , 2009, 0909.3978.

[57]  Jean-Philippe Bouchaud,et al.  THE DYNAMICS OF FINANCIAL MARKETS - MANDELBROT'S MULTIFRACTAL CASCADES, AND BEYOND , 2005, cond-mat/0501292.