scQA: A dual-perspective cell type identification model for single cell transcriptome data

[1]  Juexin Wang,et al.  scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data , 2022, Bioinform..

[2]  Guoji Guo,et al.  Cell landscape of larval and adult Xenopus laevis at single-cell resolution , 2022, Nature Communications.

[3]  C. Zheng,et al.  scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation , 2022, Briefings Bioinform..

[4]  Jinpeng Zhou,et al.  Single‐Nucleus RNA Sequencing Reveals that Decorin Expression in the Amygdala Regulates Perineuronal Nets Expression and Fear Conditioning Response after Traumatic Brain Injury , 2022, Advanced science.

[5]  I. Masai,et al.  Strip1 regulates retinal ganglion cell survival by suppressing Jun-mediated apoptosis to promote retinal neural circuit formation , 2021, bioRxiv.

[6]  Timothy A. Blenkinsop,et al.  Multi-species single-cell transcriptomic analysis of ocular compartment regulons , 2021, Nature Communications.

[7]  M. Olislagers,et al.  Comprehensive analyses of RNA-seq and genome-wide data point to enrichment of neuronal cell type subsets in neuropsychiatric disorders , 2021, bioRxiv.

[8]  Guojun Li,et al.  Clustering single-cell RNA-seq data by rank constrained similarity learning , 2021, bioRxiv.

[9]  Dong Xu,et al.  scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses , 2021, Nature Communications.

[10]  Lawrence A. David,et al.  Naught all zeros in sequence count data are the same. , 2020, Computational and structural biotechnology journal.

[11]  Xiangyu Liu,et al.  RecBic: a fast and accurate algorithm recognizing trend-preserving biclusters , 2020, Bioinform..

[12]  Lei Liu,et al.  Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human , 2020, Cell Discovery.

[13]  Monika S. Kowalczyk,et al.  Author Correction: Systematic comparison of single-cell and single-nucleus RNA-sequencing methods , 2020, Nature Biotechnology.

[14]  Matthew Stephens,et al.  Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis , 2020, Nature Genetics.

[15]  J. Pawlotsky,et al.  Early Hepatic Lesions Display Immature Tertiary Lymphoid Structures and Show Elevated Expression of Immune Inhibitory and Immunosuppressive Molecules , 2020, Clinical Cancer Research.

[16]  Oliver Stegle,et al.  Benchmarking single-cell RNA-sequencing protocols for cell atlas projects , 2020, Nature Biotechnology.

[17]  Xiang Zhou,et al.  Demystifying “drop-outs” in single-cell UMI data , 2020, Genome Biology.

[18]  Peng Qiu,et al.  Embracing the dropouts in single-cell RNA-seq analysis , 2020, Nature Communications.

[19]  J. Wargo,et al.  B cells are associated with survival and immunotherapy response in sarcoma , 2020, Nature.

[20]  Yumei Li,et al.  Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling , 2019, Nature Communications.

[21]  G. Quon,et al.  scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data , 2019, Genome Biology.

[22]  J. Marioni,et al.  Identification of a regeneration-organizing cell in the Xenopus tail , 2019, Science.

[23]  Virginia Savova,et al.  Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. , 2019, Immunity.

[24]  Valentine Svensson,et al.  Droplet scRNA-seq is not zero-inflated , 2019, Nature Biotechnology.

[25]  M. Hemberg,et al.  M3Drop: dropout-based feature selection for scRNASeq , 2018, Bioinform..

[26]  Ellen K. Velte,et al.  The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. , 2018, Cell reports.

[27]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[28]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[29]  Weizhe Hong,et al.  Detecting Activated Cell Populations Using Single-Cell RNA-Seq , 2017, Neuron.

[30]  H. Binder,et al.  Multilineage communication regulates human liver bud development from pluripotency , 2017, Nature.

[31]  Yi Zhang,et al.  Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. , 2017, Cell reports.

[32]  J. George,et al.  Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes , 2017, Genome research.

[33]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[34]  Yuchio Yanagawa,et al.  Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes , 2016, Nature Neuroscience.

[35]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[36]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[37]  A. Murphy,et al.  RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. , 2016, Cell metabolism.

[38]  D. M. Smith,et al.  Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes , 2016, Cell metabolism.

[39]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[40]  Joshua W. K. Ho,et al.  CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data , 2016, Genome Biology.

[41]  Mauro J. Muraro,et al.  De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.

[42]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[43]  Hongkai Ji,et al.  TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis , 2016, Nucleic acids research.

[44]  Bo Wang,et al.  Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning , 2016, Nature Methods.

[45]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[46]  Madeline A. Lancaster,et al.  Human cerebral organoids recapitulate gene expression programs of fetal neocortex development , 2015, Proceedings of the National Academy of Sciences.

[47]  Christopher Yau,et al.  pcaReduce: hierarchical clustering of single cell transcriptional profiles , 2015, BMC Bioinformatics.

[48]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[49]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[50]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[51]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[52]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[53]  F. Biase,et al.  Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing , 2014, Genome research.

[54]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[55]  R. Sandberg,et al.  Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells , 2014, Science.

[56]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[57]  Ruiqiang Li,et al.  Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells , 2013, Nature Structural &Molecular Biology.

[58]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[59]  T. Puthussery,et al.  Carbonic anhydrase‐related protein VIII is expressed in rod bipolar cells and alters signaling at the rod bipolar to AII‐amacrine cell synapse in the mammalian retina , 2011, The European journal of neuroscience.

[60]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[61]  John Aach,et al.  Identification of molecular markers of bipolar cells in the murine retina , 2008, The Journal of comparative neurology.

[62]  Réka Albert,et al.  Near linear time algorithm to detect community structures in large-scale networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  K. Esbensen,et al.  Principal component analysis , 1987 .

[64]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[65]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[66]  L. Hubert,et al.  Comparing partitions , 1985 .