Geometrizing rates of convergence under differential privacy constraints

We study estimation of a functional $\theta(\mathbb P)$ of an unknown probability distribution $\mathbb P \in\mathcal P$ in which the original iid sample $X_1,\dots, X_n$ is kept private even from the statistician via an $\alpha$-local differential privacy constraint. Let $\omega_1$ denote the modulus of continuity of the functional $\theta$ over $\mathcal P$, with respect to total variation distance. For a large class of loss functions $l$, we prove that the privatized minimax risk is equivalent to $l(\omega_1(n^{-1/2}))$ to within constants, under regularity conditions that are satisfied, in particular, if $\theta$ is linear and $\mathcal P$ is convex. Our results complement the theory developed by Donoho and Liu (1991) with the nowadays highly relevant case of privatized data. Somewhat surprisingly, the difficulty of the estimation problem in the private case is characterized by $\omega_1$, whereas, it is characterized by the Hellinger modulus of continuity if the original data $X_1,\dots, X_n$ are available. We also provide a general recipe for constructing rate optimal privatization mechanisms and illustrate the general theory in numerous examples. Our theory allows to quantify the price to be paid for local differential privacy in a large class of estimation problems.

[1]  F. Smithies Linear Operators , 2019, Nature.

[2]  C. Kraft Some conditions for consistency and uniform consistency of statistical procedures , 1955 .

[3]  M. Sion On general minimax theorems , 1958 .

[4]  Michel Loève,et al.  Probability Theory I , 1977 .

[5]  S L Warner,et al.  Randomized response: a survey technique for eliminating evasive answer bias. , 1965, Journal of the American Statistical Association.

[6]  G. Nöle,et al.  Zur schwachen folgenkompaktheit von testfunktionen , 1967 .

[7]  H. Witting,et al.  Optimale Tests und ungünstigste Verteilungen , 1967 .

[8]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[9]  Hans-Georg Müller,et al.  Smooth Optimum Kernel Estimators of Densities, Regression Curves and Modes , 1984 .

[10]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[11]  D. Donoho,et al.  Geometrizing Rates of Convergence, III , 1991 .

[12]  Alexandre V. Evfimievski,et al.  Limiting privacy breaches in privacy preserving data mining , 2003, PODS.

[13]  Irit Dinur,et al.  Revealing information while preserving privacy , 2003, PODS.

[14]  P. Moral,et al.  On contraction properties of Markov kernels , 2003 .

[15]  Cynthia Dwork,et al.  Privacy-Preserving Datamining on Vertically Partitioned Databases , 2004, CRYPTO.

[16]  Bruce E. Hansen,et al.  EXACT MEAN INTEGRATED SQUARED ERROR OF HIGHER ORDER KERNEL ESTIMATORS , 2005, Econometric Theory.

[17]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[18]  L. Wasserman,et al.  A Statistical Framework for Differential Privacy , 2008, 0811.2501.

[19]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[20]  Joseph P. Romano,et al.  Testing Statistical Hypotheses, Third Edition , 2008, Springer texts in statistics.

[21]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[22]  Adam D. Smith,et al.  Efficient, Differentially Private Point Estimators , 2008, ArXiv.

[23]  D. Donoho,et al.  Geometrizing Rates of Convergence , II , 2008 .

[24]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[25]  Cynthia Dwork,et al.  Differential Privacy for Statistics: What we Know and What we Want to Learn , 2010, J. Priv. Confidentiality.

[26]  Adam D. Smith,et al.  Privacy-preserving statistical estimation with optimal convergence rates , 2011, STOC '11.

[27]  Martin J. Wainwright,et al.  Local privacy and statistical minimax rates , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[28]  Martin J. Wainwright,et al.  Local Privacy, Data Processing Inequalities, and Statistical Minimax Rates , 2013, 1302.3203.

[29]  Martin J. Wainwright,et al.  Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation , 2013, NIPS.

[30]  Martin J. Wainwright,et al.  Minimax Optimal Procedures for Locally Private Estimation , 2016, ArXiv.

[31]  Pramod Viswanath,et al.  The Optimal Noise-Adding Mechanism in Differential Privacy , 2012, IEEE Transactions on Information Theory.

[32]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[33]  Alexander Barg,et al.  Asymptotically optimal private estimation under mean square loss , 2017, ArXiv.

[34]  Aleksandra B. Slavkovic,et al.  Differentially Private Uniformly Most Powerful Tests for Binomial Data , 2018, NeurIPS.