A Review of Wind Turbine Yaw Aerodynamics

The fundamental physics of HAWT aerodynamics in yaw is reviewed with reference to some of the latest scientific research covering both measurements and numerical modelling. The purpose of this chapter is to enable a concise overview of this important subject in rotor aerodynamics. This will provide the student, researcher or industry professional a quick reference. Detailed references are included for those who need to delve deeper into the subject. The chapter is also restricted to the aerodynamics of single rotors and their wake characteristics. Far wake and wind turbine to turbine effects experienced in wind farms are excluded from this review. Finally, a future outlook is provided in order to inspire further research in yawed aerodynamics.

[1]  Daniel Micallef 3D flows near a HAWT rotor: A dissection of blade and wake contributions , 2012 .

[2]  Daniel Micallef,et al.  The origins of a wind turbine tip vortex , 2014 .

[3]  D. Micallef,et al.  Effects of geometry and tip speed ratio on the HAWT blade's root flow , 2014 .

[4]  R. Flemming,et al.  Actuator Disc Methods Applied to Wind Turbines , 2016 .

[5]  Jean-Jacques Chattot,et al.  Flow Physics and Stokes’ Theorem in Wind Turbine Aerodynamics , 2007 .

[6]  M. O. Hansen Aerodynamics of Wind Turbines: second edition , 2008 .

[7]  J G Schepers,et al.  Joint investigation of dynamic inflow effects and implementation of an engineering method , 1995 .

[8]  Scott Schreck,et al.  Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition , 2005 .

[9]  Daniel Micallef,et al.  Estimation of loads on a horizontal axis wind turbine operating in yawed flow conditions , 2015 .

[10]  Ioannis Antoniou,et al.  The influence of the wind speed profile on wind turbine performance measurements , 2009 .

[11]  Maureen Hand,et al.  HAWT dynamic stall response asymmetries under yawed flow conditions , 2000 .

[12]  Daniel Micallef,et al.  3D load estimation on a horizontal axis wind turbine using SPIV , 2014 .

[13]  Takao Maeda,et al.  Rotor Blade Sectional Performance Under Yawed Inflow Conditions , 2008 .

[14]  Muyiwa S. Adaramola,et al.  Performance and near wake measurements of a model horizontal axis wind turbine , 2012 .

[15]  J. Schepers An engineering model for yawed conditions, developed on basis of wind tunnel measurements , 1999 .

[16]  F. Coton,et al.  A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data , 2008 .

[17]  I. Grant,et al.  An experimental and numerical study of the vortex filaments in the wake of an operational, horizontal-axis, wind turbine , 2000 .

[18]  Jens Nørkær Sørensen,et al.  Determination of the angle of attack on rotor blades , 2009 .

[19]  Lakshmi N. Sankar,et al.  Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under Yawed Flow Conditions , 2005 .

[20]  Jeppe Johansen,et al.  Tip studies using CFD and comparison with tip loss models , 2004 .

[21]  Gerard van Bussel,et al.  Measurement of tip vortex paths in the wake of a HAWT under yawed flow conditions , 2005 .

[22]  Michael Robinson,et al.  Rotational Augmentation of Horizontal Axis Wind Turbine Blade Aerodynamic Response , 2002 .

[23]  L. J. Vermeera,et al.  Wind turbine wake aerodynamics , 2003 .

[24]  David A. Peters,et al.  Theoretical prediction of dynamic inflow derivatives , 1980 .

[25]  Scott Schreck,et al.  Rotational augmentation of horizontal axis wind turbine blade aerodynamic response , 2002 .

[26]  Knut Fristedt,et al.  The Aeronautical Research Institute of Sweden (FFA) , 1977 .

[28]  Ian Grant,et al.  A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw , 2000 .

[29]  J. Sheridan,et al.  Characterisation of a horizontal axis wind turbine’s tip and root vortices , 2013 .

[30]  Tonio Sant,et al.  Estimating the angle of attack from blade pressure measurements on the NREL phase VI rotor using a free wake vortex model: Axial conditions , 2006 .

[31]  James L. Tangler,et al.  Insight into Wind Turbine Stall and Post-stall Aerodynamics , 2004 .

[32]  Daniel Micallef,et al.  Final report of IEA Task 29, Mexnext (Phase 1): Analysis of Mexico wind tunnel measurements , 2012 .

[33]  E. S. Politis,et al.  Flow and wakes in large wind farms: Final report for UpWind WP8 , 2011 .

[34]  Andreas Bechmann,et al.  Near wake Reynolds-averaged Navier–Stokes predictions of the wake behind the MEXICO rotor in axial and yawed flow conditions , 2014 .

[35]  Carlos Simao Ferreira,et al.  An investigation of radial velocities for a horizontal axis wind turbine in axial and yawed flows , 2013 .

[36]  D. M. Eggleston,et al.  A comparative study of the aerodynamics of several wind turbines using flow visualization , 1990 .

[37]  L. Vermeer,et al.  A review of wind turbine wake research at TU Delft , 2001 .

[38]  J. Gordon Leishman,et al.  Challenges in Modeling the Unsteady Aerodynamics of Wind Turbines , 2002 .

[39]  Ian Grant,et al.  Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation , 1997 .

[40]  Niels N. Sørensen,et al.  Yaw aerodynamics analyzed with three codes in comparison with experiment , 2003 .

[41]  Daniel Micallef,et al.  Analysis of Mexico wind tunnel measurements: Final report of IEA Task 29, Mexnext (Phase 1) , 2012 .

[42]  G.J.W. Van Bussel,et al.  The aerodynamics of horizontal axis wind turbine rotors explored with asymptotic expansion methods , 1995 .

[44]  Jeppe Johansen,et al.  Aerofoil characteristics from 3D CFD rotor computations , 2004 .

[45]  Gijs van Kuik,et al.  Estimating the angle of attack from blade pressure measurements on the National Renewable Energy Laboratory phase VI rotor using a free wake vortex model: yawed conditions , 2009 .

[46]  Yutaka Hasegawa,et al.  NUMERICAL ANALYSIS OF YAWED INFLOW EFFECTS ON A HAWT ROTOR , 1999 .

[47]  Gam Gijs van Kuik,et al.  HAWT near‐wake aerodynamics, Part I: axial flow conditions , 2008 .

[48]  W. Haans,et al.  Wind turbine aerodynamics in yaw: unravelling the measured rotor wake , 2011 .

[49]  G. Bussel,et al.  Experimental and numerical investigation of tip vortex generation and evolution on horizontal axis wind turbines , 2016 .

[50]  A. Rosen,et al.  The average output power of a wind turbine in a turbulent wind , 1994 .

[51]  H. Glauert A GENERAL THEORY OF THE AUTOGYRO , 2022 .

[52]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[53]  J. G. Schepers,et al.  Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements , 2012 .

[54]  Daniel Micallef,et al.  Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments , 2010 .

[55]  Tonio Sant,et al.  Improving BEM-based Aerodynamic Models in Wind Turbine Design Codes , 2007 .

[56]  TongguangWang A brief review on wind turbine aerodynamics , 2012 .

[57]  Maureen Hand,et al.  Blade Dynamic Stall Vortex Kinematics for a Horizontal Axis Wind Turbine in Yawed Conditions , 2001 .

[58]  Hester Bijl,et al.  Comparing different dynamic stall models , 2013 .

[59]  Boeing Vertol Co.,et al.  Improved Method Of Predicting Helicopter Control Response And Gust Sensitivity , 1979 .

[60]  van Gjw Gerard Bussel,et al.  Experimentally observed effects of yaw misalignment on the inflow in the rotor plane , 2007 .

[61]  P.W. Lehn,et al.  Simulation Model of Wind Turbine 3p Torque Oscillations due to Wind Shear and Tower Shadow , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[63]  R. P. Coleman,et al.  Evaluation of the Induced-Velocity Field of an Idealized Helicopter Rotor , 1945 .

[64]  Maureen Hand,et al.  Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Con gurations and Available Data Campaigns , 2001 .