A new generalization of the Waring distribution

A tetraparametric univariate distribution generated by the Gaussian hypergeometric function that includes the Waring and the generalized Waring distributions as particular cases is presented. This distribution is expressed as a generalized beta type I mixture of a negative binomial distribution, in such a way that the variance of the tetraparametric model can be split into three components: randomness, proneness and liability. These results are extensions of known analogous properties of the generalized Waring distribution. Two applications in the fields of sport and economy are included in order to illustrate the utility of the new distribution compared with the generalized Waring distribution.

[1]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[2]  A. W. Kemp,et al.  On mixing processes and the lost-games distribution , 1971 .

[3]  Mark Levene,et al.  A stochastic model for the evolution of the Web , 2002, Comput. Networks.

[4]  Ramesh C. Gupta,et al.  A new generalization of the negative binomial distribution , 2004, Comput. Stat. Data Anal..

[5]  J. O. Irwin,et al.  The Generalized Waring Distribution Applied to Accident Theory , 1968 .

[6]  Herbert Robbins,et al.  Mixture of Distributions , 1948 .

[7]  J. O. Irwin,et al.  The Generalized Waring Distribution. Part III , 1975 .

[8]  Jerzy Neyman,et al.  On a New Class of "Contagious" Distributions, Applicable in Entomology and Bacteriology , 1939 .

[9]  José Rodríguez-Avi,et al.  A new class of discrete distributions with complex parameters , 2003 .

[10]  J. O. Irwin,et al.  The Generalized Waring Distribution. Part II , 1975 .

[11]  M. Handcock,et al.  Likelihood-based inference for stochastic models of sexual network formation. , 2004, Theoretical population biology.

[12]  Evdokia Xekalaki,et al.  Infinite divisibility, completeness and regression properties of the univariate generalized waring distribution , 1983 .

[13]  Masaaki Sibuya,et al.  Generalized hypergeometric, digamma and trigamma distributions , 1979 .

[14]  Isola Ajiferuke Probabilistic model for distribution of authorships , 1992 .

[15]  Martina Morris,et al.  Center for Studies in Demography and Ecology On “ Sexual contacts and epidemic thresholds , ” models and inference for Sexual partnership distributions , 2005 .

[16]  E. Xekalaki The Bivariate Generalized Waring Distribution and its Application to Accident Theory , 1984 .

[17]  J. O. Irwin,et al.  The Place of Mathematics in Medical and Biological Statistics. , 1963 .

[18]  B. Arnold,et al.  Conditional specification of statistical models , 1999 .

[19]  A. Conde-Sánchez,et al.  Estimation of Parameters in Gaussian Hypergeometric Distributions , 2003 .

[20]  H. Teicher On the Mixture of Distributions , 1960 .

[21]  Masaaki Shibuya,et al.  Classification of the Generalized Hypergeometric family of distributions , 1981 .

[22]  J. Davis Univariate Discrete Distributions , 2006 .

[23]  A. Conde-Sánchez,et al.  Gaussian Hypergeometric Probability Distributions for Fitting Discrete Data , 2007 .

[24]  Saralees Nadarajah,et al.  A generalization of the beta–binomial distribution , 2007 .

[25]  José Rodríguez-Avi,et al.  A triparametric discrete distribution with complex parameters , 2004 .

[26]  Masaaki Sibuya,et al.  Digamma and Trigamma Distributions , 2006 .

[27]  E. Xekalaki The Univariate Generalized Waring Distribution in Relation to Accident Theory: Proneness, Spells or Contagion? , 1983, Biometrics.

[28]  A. Conde-Sánchez,et al.  Estimation and Inference in Complex Triparametric Pearson Distributions , 2005 .