Invited review EEG source imaging

Objective: Electroencephalography (EEG) is an important tool for studying the temporal dynamics of the human brain’s large-scale neuronal circuits. However, most EEG applications fail to capitalize on all of the data’s available information, particularly that concerning the location of active sources in the brain. Localizing the sources of a given scalp measurement is only achieved by solving the so-called inverse problem. By introducing reasonable a priori constraints, the inverse problem can be solved and the most probable sources in the brain at every moment in time can be accurately localized. Methods and Results: Here, we review the different EEG source localization procedures applied during the last two decades. Additionally, we detail the importance of those procedures preceding and following source estimation that are intimately linked to a successful, reliable result. We discuss (1) the number and positioning of electrodes, (2) the varieties of inverse solution models and algorithms, (3) the integration of EEG source estimations with MRI data, (4) the integration of time and frequency in source imaging, and (5) the statistical analysis of inverse solution results. Conclusions and Significance: We show that modern EEG source imaging simultaneously details the temporal and spatial dimensions of brain activity, making it an important and affordable tool to study the properties of cerebral, neural networks in cognitive and clinical neurosciences.

[1]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[2]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[3]  Bernd Lütkenhöner,et al.  Figures of merit to compare distributed linear inverse solutions , 1996, Brain Topography.

[4]  Armin Schnider,et al.  Spontaneous confabulation and the adaptation of thought to ongoing reality , 2003, Nature Reviews Neuroscience.

[5]  S. Sato,et al.  How well does a three-sphere model predict positions of dipoles in a realistically shaped head? , 1993, Electroencephalography and clinical neurophysiology.

[6]  J Gotman,et al.  Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields , 2001, Clinical Neurophysiology.

[7]  P. Viviani,et al.  Internally driven vs. externally cued movement selection: a study on the timing of brain activity. , 2000, Brain research. Cognitive brain research.

[8]  Micah M. Murray,et al.  Improving the performance of linear inverse solutions by inverting the resolution matrix , 2004, IEEE Transactions on Biomedical Engineering.

[9]  M. Scherg,et al.  Evoked dipole source potentials of the human auditory cortex. , 1986, Electroencephalography and clinical neurophysiology.

[10]  Christoph M. Michel,et al.  New insights into the Stroop effect : a spatiotemporal analysis of electric brain activity , 2000 .

[11]  Rik Van de Walle,et al.  Comparison of performance of spherical and realistic head models in dipole localization from noisy EEG. , 2002, Medical engineering & physics.

[12]  B.N. Cuffin,et al.  Effects of head shape on EEGs and MEGs , 1990, IEEE Transactions on Biomedical Engineering.

[13]  C. Michel,et al.  Noninvasive Localization of Electromagnetic Epileptic Activity. II. Demonstration of Sublobar Accuracy in Patients with Simultaneous Surface and Depth Recordings , 2004, Brain Topography.

[14]  B N Cuffin,et al.  Accuracy of electroencephalographic dipole localization of epileptiform activities associated with focal brain lesions , 1998, Annals of neurology.

[15]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Margot J. Taylor,et al.  Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. , 2000, Psychophysiology.

[17]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[18]  C M Michel,et al.  Intracerebral dipole source localization for FFT power maps. , 1990, Electroencephalography and clinical neurophysiology.

[19]  C. Michel,et al.  Electromagnetic Inverse Solutions in Anatomically Constrained Spherical Head Models , 2004, Brain Topography.

[20]  Christoph M. Michel,et al.  Electrical neuroimaging based on biophysical constraints , 2004, NeuroImage.

[21]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[22]  D W King,et al.  Magnetoencephalography in neocortical epilepsy. , 2000, Advances in neurology.

[23]  J. Gotman,et al.  A simulation study of the error in dipole source localization for EEG spikes with a realistic head model , 2003, Clinical Neurophysiology.

[24]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[25]  D L Jewett,et al.  Insidious errors in dipole localization parameters at a single time-point due to model misspecification of number of shells. , 1993, Electroencephalography and clinical neurophysiology.

[26]  Thomas Dierks,et al.  Electrical brain activity in schizophrenia described by equivalent dipoles of FFT-data , 1995, Schizophrenia Research.

[27]  David Poeppel,et al.  Time-frequency MEG-MUSIC algorithm , 1999, IEEE Transactions on Medical Imaging.

[28]  E Callaway,et al.  Scopolamine effects on visual information processing, attention, and event-related potential map latencies. , 1992, Psychophysiology.

[29]  Dietrich Lehmann,et al.  EEG reactivity in high and low symptomatic schizophrenics, using source modelling in the frequency domain , 2005, Brain Topography.

[30]  B. Lütkenhöner,et al.  The resolution-field concept. , 1997, Electroencephalography and Clinical Neurophysiology.

[31]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .

[32]  G. V. Simpson,et al.  A test of brain electrical source analysis (BESA): a simulation study. , 1994, Electroencephalography and clinical neurophysiology.

[33]  A. A. Ioannides,et al.  Single-trial variability in early visual neuromagnetic responses: an explorative study based on the regional activation contributing to the N70m peak , 2003, NeuroImage.

[34]  L. Soufflet,et al.  A statistical evaluation of the main interpolation methods applied to 3-dimensional EEG mapping. , 1991, Electroencephalography and clinical neurophysiology.

[35]  Karl J. Friston,et al.  Systematic Regularization of Linear Inverse Solutions of the EEG Source Localization Problem , 2002, NeuroImage.

[36]  R Plonsey,et al.  The nature of sources of bioelectric and biomagnetic fields. , 1982, Biophysical journal.

[37]  J. Ebersole Defining epileptogenic foci: past, present, future. , 1997, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[38]  Z Lin,et al.  Advances in time-frequency analysis of biomedical signals. , 1996, Critical reviews in biomedical engineering.

[39]  F Langevin,et al.  Scalp potential and current density mapping with an enhanced spherical spline interpolation. , 1994, Medical progress through technology.

[40]  D Lehmann,et al.  Comparison of topographic maps and the reference electrode: comments on two papers by Desmedt and collaborators. , 1993, Electroencephalography and clinical neurophysiology.

[41]  Lloyd Kaufman,et al.  Advantages and limitations of magnetic source imaging , 2005, Brain Topography.

[42]  Wolfgang Skrandies,et al.  Data reduction of multichannel fields: Global field power and Principal Component Analysis , 2005, Brain Topography.

[43]  Andreas A. Ioannides,et al.  Single Trial Analysis of Neurophysiological Correlates of the Recognition of Complex Objects and Facial Expressions of Emotion , 2004, Brain Topography.

[44]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[45]  C. Jack,et al.  Determination of 10-20 system electrode locations using magnetic resonance image scanning with markers. , 1993, Electroencephalography and clinical neurophysiology.

[46]  J. Gotman,et al.  Non-uniform spatial sampling in EEG source analysis , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[47]  T Landis,et al.  Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. , 2000, Cerebral cortex.

[48]  J. D. Munck,et al.  A fast method to compute the potential in the multisphere model (EEG application) , 1993, IEEE Transactions on Biomedical Engineering.

[49]  F. Perrin,et al.  The finite element method for a realistic head model of electrical brain activities: preliminary results. , 1991, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[50]  C. M. Michel,et al.  Frequency domain source localization shows state-dependent diazepam effects in 47-channel EEG , 2005, Journal of Neural Transmission / General Section JNT.

[51]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[52]  F. Perrin,et al.  Mapping of scalp potentials by surface spline interpolation. , 1987, Electroencephalography and clinical neurophysiology.

[53]  Dietrich Lehmann,et al.  Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages , 2002, NeuroImage.

[54]  C S Henriquez,et al.  Finite element analysis of bioelectric phenomena. , 1990, Critical reviews in biomedical engineering.

[55]  F. Duffy,et al.  Significance probability mapping: an aid in the topographic analysis of brain electrical activity. , 1981, Electroencephalography and clinical neurophysiology.

[56]  C M Michel,et al.  Localization of the sources of EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation. , 1992, Electroencephalography and clinical neurophysiology.

[57]  D. Lehmann,et al.  Segmentation of brain electrical activity into microstates: model estimation and validation , 1995, IEEE Transactions on Biomedical Engineering.

[58]  John J. Foxe,et al.  Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. , 2005, Cerebral cortex.

[59]  Bin He,et al.  High-resolution EEG: a new realistic geometry spline Laplacian estimation technique , 2001, Clinical Neurophysiology.

[60]  L. Deecke,et al.  Neuroimage of Voluntary Movement: Topography of the Bereitschaftspotential, a 64-Channel DC Current Source Density Study , 1999, NeuroImage.

[61]  S. G. Andino,et al.  Discussing the Capabilities of Laplacian Minimization , 2004, Brain Topography.

[62]  Christoph M. Michel,et al.  Visually induced activity in human frontal motor areas during simple visuomotor performance , 2000, Neuroreport.

[63]  C M Michel,et al.  Frontal Lobe Epilepsy Associated With Tuberous Sclerosis: Electroencephalographic-Magnetic Resonance Image Fusioning , 1998, Journal of child neurology.

[64]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[65]  Thomas Dierks,et al.  Dementia of the alzheimer type: Effects on the spontaneous EEG described by dipole sources , 1993, Psychiatry Research: Neuroimaging.

[66]  Christoph M. Michel,et al.  Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging , 2004, NeuroImage.

[67]  Deepak Khosla,et al.  Spatial mislocalization of EEG electrodes – effects on accuracy of dipole estimation , 1999, Clinical Neurophysiology.

[68]  Hae-Jeong Park,et al.  Statistical parametric mapping of LORETA using high density EEG and individual MRI: Application to mismatch negativities in Schizophrenia , 2002, Human brain mapping.

[69]  F. Di Russo,et al.  Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies , 2001, Clinical Neurophysiology.

[70]  J. J. Ermer,et al.  Rapidly recomputable EEG forward models for realistic head shapes. , 2001, Physics in medicine and biology.

[71]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[72]  M Scherg,et al.  Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography. , 1995, Electroencephalography and clinical neurophysiology.

[73]  B.N. Cuffin,et al.  EEG localization accuracy improvements using realistically shaped head models , 1996, IEEE Transactions on Biomedical Engineering.

[74]  B. Lütkenhöner Frequency-domain localization of intracerebral dipolar sources. , 1992, Electroencephalography and clinical neurophysiology.

[75]  R. Oostenveld,et al.  Attention and movement-related motor cortex activation: a high-density EEG study of spatial stimulus-response compatibility. , 2003, Brain research. Cognitive brain research.

[76]  Norihiko Fujita,et al.  Movement-Related Desynchronization of the Cerebral Cortex Studied with Spatially Filtered Magnetoencephalography , 2000, NeuroImage.

[77]  J S Ebersole,et al.  Noninvasive Localization of Epileptogenic Foci by EEG Source Modeling , 2000, Epilepsia.

[78]  Ramesh Srinivasan,et al.  Estimating the spatial Nyquist of the human EEG , 1998 .

[79]  Asaid Khateb,et al.  Neural processing of illusory and real contours revealed by high‐density ERP mapping , 2002, Neuroreport.

[80]  Deborah A. Vitacco,et al.  Correspondence of event‐related potential tomography and functional magnetic resonance imaging during language processing , 2002, Human brain mapping.

[81]  Asaid Khateb,et al.  Processing of semantic categorical and associative relations: an ERP mapping study. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[82]  Donald L Schomer,et al.  Experimental tests of EEG source localization accuracy in realistically shaped head models , 2001, Clinical Neurophysiology.

[83]  Andreas A. Ioannides,et al.  Real Time Processing of Affective and Cognitive Stimuli in the Human Brain Extracted from MEG Signals , 2000, Brain Topography.

[84]  C M Michel,et al.  Visual activity in the human frontal eye field. , 1999, Neuroreport.

[85]  Kevin Whittingstall,et al.  Effects of dipole position, orientation and noise on the accuracy of EEG source localization , 2003, Biomedical engineering online.

[86]  M. Junghöfer,et al.  The polar average reference effect: a bias in estimating the head surface integral in EEG recording , 1999, Clinical Neurophysiology.

[87]  D. Tucker Spatial sampling of head electrical fields: the geodesic sensor net. , 1993, Electroencephalography and clinical neurophysiology.

[88]  J. Ford,et al.  Combined event‐related fMRI and EEG evidence for temporal—parietal cortex activation during target detection , 1997, Neuroreport.

[89]  T Landis,et al.  Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. , 1998, Electroencephalography and clinical neurophysiology.

[90]  R. Grave de Peralta Menendez,et al.  Non‐stationary distributed source approximation: An alternative to improve localization procedures , 2001, Human brain mapping.

[91]  C. Michel,et al.  Evidence for rapid face recognition from human scalp and intracranial electrodes , 1997, Neuroreport.

[92]  C M Michel,et al.  Diazepam and sulpiride effects on frequency domain EEG source locations. , 1994, Neuropsychobiology.

[93]  C. Michel,et al.  Noninvasive Localization of Electromagnetic Epileptic Activity. I. Method Descriptions and Simulations , 2004, Brain Topography.

[94]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[95]  B. He,et al.  High-resolution spatio-temporal functional neuroimaging of brain activity. , 2002, Critical reviews in biomedical engineering.

[96]  J.C. Mosher,et al.  Recursive MUSIC: A framework for EEG and MEG source localization , 1998, IEEE Transactions on Biomedical Engineering.

[97]  Jake K. Aggarwal,et al.  On Smoothness of a Vector Field-Application to Optical Flow , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[98]  T. Elbert,et al.  Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG , 2002, Journal of Neuroscience Methods.

[99]  B.N. Cuffin,et al.  Effects of local variations in skull and scalp thickness on EEG's and MEG's , 1993, IEEE Transactions on Biomedical Engineering.

[100]  S. Gonzalez-Andino,et al.  A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem , 1998, IEEE Transactions on Biomedical Engineering.

[101]  J S Ebersole,et al.  Sublobar localization of temporal neocortical epileptogenic foci by source modeling. , 2000, Advances in neurology.

[102]  P Berg,et al.  Multiple source analysis of interictal spikes: goals, requirements, and clinical value. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[103]  R.J. Maciunas,et al.  An automatic technique for finding and localizing externally attached markers in CT and MR volume images of the head , 1996, IEEE Transactions on Biomedical Engineering.

[104]  G Lantz,et al.  Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns , 2001, Clinical Neurophysiology.

[105]  J. Pernier,et al.  Improved forward EEG calculations using local mesh refinement of realistic head geometries. , 1995, Electroencephalography and Clinical Neurophysiology.

[106]  T Dierks,et al.  Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study , 2000, Clinical Neurophysiology.

[107]  C. M. Michel,et al.  Temporal and spatial determination of EEG-seizure onset in the frequency domain , 2000, Clinical Neurophysiology.

[108]  B. Lutkenhoner,et al.  Localization of a dipolar source in a skull phantom: realistic versus spherical model , 1994, IEEE Transactions on Biomedical Engineering.

[109]  John J. Foxe,et al.  The Spatiotemporal Dynamics of Illusory Contour Processing: Combined High-Density Electrical Mapping, Source Analysis, and Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[110]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[111]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[112]  G Van Hoey,et al.  EEG dipole source localization using artificial neural networks. , 2000, Physics in medicine and biology.

[113]  M Kajola,et al.  A comparison of the localization of spontaneous neuromagnetic activity in the frequency and time domains. , 1993, Electroencephalography and clinical neurophysiology.

[114]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[115]  B. N. Cuffin,et al.  Accuracy of EEG dipole source localization using implanted sources in the human brain , 1999, Clinical Neurophysiology.

[116]  Cuffin Bn Effects of modeling errors and EEG measurement montage on source localization accuracy. , 2001 .

[117]  Christoph M. Michel,et al.  Electrical neuroimaging reveals early generator modulation to emotional words , 2004, NeuroImage.

[118]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[119]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[120]  D. Tucker,et al.  Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials , 2005, Brain Topography.

[121]  Dr Rolando Grave de Peralta Menendez,et al.  Single dipole localization: Some numerical aspects and a practical rejection criterion for the fitted parameters , 2005, Brain Topography.

[122]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[123]  R. Salmelin,et al.  Global optimization in the localization of neuromagnetic sources , 1998, IEEE Transactions on Biomedical Engineering.

[124]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[125]  J. D. Munck The potential distribution in a layered anisotropic spheroidal volume conductor , 1988 .

[126]  Rolando J. Biscay,et al.  Frequency domain models of the EEG , 2005, Brain Topography.

[127]  R. Kristeva-Feige,et al.  Localization of Interictal Delta and Epileptiform EEG Activity Associated with Focal Epileptogenic Brain Lesions , 2001, NeuroImage.

[128]  C. Michel,et al.  Unraveling the cerebral dynamics of mental imagery , 1997, Human brain mapping.

[129]  E. Donchin,et al.  Spatiotemporal analysis of the late ERP responses to deviant stimuli. , 2001, Psychophysiology.

[130]  M Hallett,et al.  A method for determining optimal interelectrode spacing for cerebral topographic mapping. , 1989, Electroencephalography and clinical neurophysiology.

[131]  Gregor Thut,et al.  Evidence for interhemispheric motor-level transfer in a simple reaction time task: an EEG study , 1999, Experimental Brain Research.

[132]  D Lehmann,et al.  Source localization of EEG activity during hypnotically induced anxiety and relaxation. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[133]  F Mauguière,et al.  Source propagation of interictal spikes in temporal lobe epilepsy. Correlations between spike dipole modelling and [18F]fluorodeoxyglucose PET data. , 1996, Brain : a journal of neurology.

[134]  John W. Rohrbaugh,et al.  13 Sensory and Motor Aspects of the Contingent Negative Variation , 1983 .

[135]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[136]  D Lehmann,et al.  Spatial organization of EEG activity from alertness to sleep stage 2 in old and younger subjects , 2002, Journal of sleep research.

[137]  H. Lüders,et al.  Presurgical evaluation of epilepsy. , 2001, Brain : a journal of neurology.

[138]  D.B. Geselowitz,et al.  The zero of potential , 1998, IEEE Engineering in Medicine and Biology Magazine.

[139]  G. Curio,et al.  Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization , 2003, NeuroImage.

[140]  C Baumgartner,et al.  Clinical applications of magnetoencephalography. , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[141]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[142]  B. Kollmeier,et al.  Dipole source analysis of auditory brain stem responses evoked by lateralized clicks. , 2003, Zeitschrift fur medizinische Physik.

[143]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[144]  C. H. Lücking,et al.  Cortical current density reconstruction of interictal epileptiform activity in temporal lobe epilepsy , 2001, Clinical Neurophysiology.

[145]  Juha Virtanen,et al.  Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging , 1999, Human brain mapping.

[146]  C. Michel,et al.  Propagation of Interictal Epileptiform Activity Can Lead to Erroneous Source Localizations: A 128-Channel EEG Mapping Study , 2003, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[147]  Mark D'Esposito,et al.  Cognitive Association Formation in Human Memory Revealed by Spatiotemporal Brain Imaging , 2001, Neuron.

[148]  M Adjouadi,et al.  Relating induced changes in EEG signals to orientation of visual stimuli using the ESI-256 machine. , 2000, Biomedical sciences instrumentation.

[149]  Wolfgang Skrandies,et al.  Appendix E – Topographical Analysis of Electrical Brain Activity: Methodological Aspects , 2003 .

[150]  F. Vollenweider,et al.  Localization of MDMA‐induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA) , 2001, Human brain mapping.

[151]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[152]  F. Richer,et al.  Methodological considerations for the evaluation of spatio-temporal source models. , 1991, Electroencephalography and clinical neurophysiology.

[153]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[154]  D. Lehmann,et al.  Principles of spatial analysis , 1987 .

[155]  Christoph M. Michel,et al.  New insights into the stroop effect: Spatio-temporal analysis of electric brain activity , 2000, NeuroImage.

[156]  F. Zanow,et al.  Individually shaped volume conductor models of the head in EEG source localisation , 1995, Medical and Biological Engineering and Computing.

[157]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[158]  S. Morand,et al.  Electric source imaging of human brain functions , 2001, Brain Research Reviews.

[159]  C. Michel,et al.  Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography , 1997, Human brain mapping.

[160]  A. Gevins,et al.  Beyond topographic mapping: Towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs , 2005, Brain Topography.

[161]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[162]  T. D. Waberski,et al.  Spatiotemporal Imaging of Electrical Activity Related to Attention to Somatosensory Stimulation , 2002, NeuroImage.

[163]  Se Robinson,et al.  Functional neuroimaging by Synthetic Aperture Magnetometry (SAM) , 1999 .

[164]  C M Michel,et al.  The time course of semantic category processing in the cerebral hemispheres: an electrophysiological study. , 2001, Brain research. Cognitive brain research.

[165]  G Van Hoey,et al.  Interictal and ictal source localization in neocortical versus medial temporal lobe epilepsy. , 2000, Advances in neurology.

[166]  P. Berg,et al.  A fast method for forward computation of multiple-shell spherical head models. , 1994, Electroencephalography and clinical neurophysiology.

[167]  J Gotman,et al.  Reliability of dipole models of epileptic spikes , 1999, Clinical Neurophysiology.

[168]  L. Deecke,et al.  High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task , 2000, Clinical Neurophysiology.

[169]  G Lantz,et al.  Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin , 1999, Clinical Neurophysiology.

[170]  Patrick Berg,et al.  Advanced Tools for Digital EEG Review:: Virtual Source Montages, Whole-head Mapping, Correlation, and Phase Analysis , 2002, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[171]  Jie Lian,et al.  An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity , 2002, IEEE Transactions on Biomedical Engineering.

[172]  Jean Gotman,et al.  The influence of electrode location errors on EEG dipole source localization with a realistic head model , 2001, Clinical Neurophysiology.

[173]  D. Lehmann,et al.  Reference-free identification of components of checkerboard-evoked multichannel potential fields. , 1980, Electroencephalography and clinical neurophysiology.

[174]  G. Mangun,et al.  Estimation of interpolation errors in scalp topographic mapping. , 1996, Electroencephalography and clinical neurophysiology.

[175]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[176]  Christoph Baumgartner,et al.  Magnetoencephalography in presurgical epilepsy evaluation , 2002, Neurosurgical Review.

[177]  G. Barkley,et al.  MEG and EEG in Epilepsy , 2003, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[178]  E Rodin,et al.  Displaying Electroencephalographic Dipole Sources on Magnetic Resonance Images , 1997, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[179]  C. Michel,et al.  128-Channel EEG Source Imaging in Epilepsy: Clinical Yield and Localization Precision , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[180]  G Lantz,et al.  Simultaneous intracranial and extracranial recording of interictal epileptiform activity in patients with drug resistant partial epilepsy: patterns of conduction and results from dipole reconstructions. , 1996, Electroencephalography and clinical neurophysiology.

[181]  R. Pascual-Marqui Review of methods for solving the EEG inverse problem , 1999 .

[182]  R. Greenblatt Probabilistic reconstruction of multiple sources in the bioelectromagnetic inverse problem , 1993 .

[183]  O Bertrand,et al.  Precautions in Topographic Mapping and in Evoked Potential Map Reading , 1990, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[184]  C Tomberg,et al.  Beware of the average reference in brain mapping. , 1990, Electroencephalography and clinical neurophysiology. Supplement.

[185]  Rolando Grave de Peralta Menendez,et al.  Backus and gilbert method for vector fields , 1999 .

[186]  B. Steinhoff,et al.  Source Reconstruction of Mesial‐Temporal Epileptiform Activity: Comparison of Inverse Techniques , 2000, Epilepsia.

[187]  T Dierks,et al.  Brain electrical activity in depression described by equivalent dipoles. , 1993, Journal of affective disorders.

[188]  J. Malmivuo,et al.  Sensitivity distributions of EEG and MEG measurements , 1997, IEEE Transactions on Biomedical Engineering.

[189]  A Gueziec,et al.  Optimal reference electrode selection for electric source imaging. , 1996, Electroencephalography and Clinical Neurophysiology.

[190]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[191]  A. Dale,et al.  Coupling of Total Hemoglobin Concentration, Oxygenation, and Neural Activity in Rat Somatosensory Cortex , 2003, Neuron.

[192]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[193]  Delia Cabrera Fernández,et al.  Some limitations of spatio temporal source models , 1995, Brain Topography.

[194]  Christoph M. Michel,et al.  Segregated Processing of Auditory Motion and Auditory Location: An ERP Mapping Study , 2002, NeuroImage.

[195]  K. K. Tan,et al.  The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. , 1993, Electroencephalography and clinical neurophysiology.

[196]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[197]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[198]  A. Urbano,et al.  Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. , 1996, Electroencephalography and clinical neurophysiology.

[199]  C C Wood,et al.  Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[200]  J. Pernier,et al.  Improved dipole localization using local mesh refinement of realistic head geometries: an EEG simulation study. , 1996, Electroencephalography and clinical neurophysiology.

[201]  Martin J. Herrmann,et al.  Brain electrical dysfunction of the anterior cingulate in schizophrenic patients , 2003, Psychiatry Research: Neuroimaging.

[202]  C M Michel,et al.  Source localization of brain electric field frequency bands during conscious, spontaneous, visual imagery and abstract thought. , 1993, Brain research. Cognitive brain research.

[203]  J. Gotman,et al.  Systematic source estimation of spikes by a combination of independent component analysis and RAP-MUSIC I: Principles and simulation study , 2002, Clinical Neurophysiology.

[204]  Margitta Seeck,et al.  The speed of visual cognition. , 2004, Supplements to Clinical neurophysiology.

[205]  R Grave de Peralta Menendez,et al.  Imaging the electrical activity of the brain: ELECTRA , 2000, Human brain mapping.

[206]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[207]  J. Desmond,et al.  Seeing through the skull: advanced EEGs use MRIs to accurately measure cortical activity from the scalp. , 1991 .

[208]  Erzsébet Marosi,et al.  Frequency source analysis in patients with brain lesions , 2005, Brain Topography.

[209]  H Spekreijse,et al.  A practical method for determining electrode positions on the head. , 1991, Electroencephalography and clinical neurophysiology.

[210]  Marco Congedo,et al.  Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[211]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[212]  J Le,et al.  A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies. , 1998, Electroencephalography and clinical neurophysiology.

[213]  C Tomberg,et al.  Inadequacy of the average reference for the topographic mapping of focal enhancements of brain potentials. , 1990, Electroencephalography and clinical neurophysiology.

[214]  Rolando Grave de Peralta,et al.  Comparison of Algorithms for the Localization of Focal Sources: Evaluation with simulated data and analysis of experimental data. , 2002 .

[215]  Richard M. Leahy,et al.  MEG-based imaging of focal neuronal current sources , 1996, IEEE Transactions on Medical Imaging.

[216]  M. Fuchs,et al.  Boundary element method volume conductor models for EEG source reconstruction , 2001, Clinical Neurophysiology.

[217]  Christoph M. Michel,et al.  Epileptic source localization with high density EEG: how many electrodes are needed? , 2003, Clinical Neurophysiology.

[218]  J. P. Ary,et al.  Location of Sources of Evoked Scalp Potentials: Corrections for Skull and Scalp Thicknesses , 1981, IEEE Transactions on Biomedical Engineering.

[219]  P. V. van Rijen,et al.  Measurement of the Conductivity of Skull, Temporarily Removed During Epilepsy Surgery , 2004, Brain Topography.

[220]  Cees J. Stok,et al.  The influence of model parameters on EEG/MEG single dipole source estimation , 1987, IEEE Transactions on Biomedical Engineering.

[221]  M. Fuchs,et al.  A standardized boundary element method volume conductor model , 2002, Clinical Neurophysiology.

[222]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[223]  Z. Zhang,et al.  A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. , 1995, Physics in medicine and biology.

[224]  Gregor Thut,et al.  Prediction of response speed by anticipatory high‐frequency (gamma band) oscillations in the human brain , 2005, Human brain mapping.

[225]  T. Koenig,et al.  Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[226]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[227]  G. Barnes,et al.  Statistical flattening of MEG beamformer images , 2003, Human brain mapping.

[228]  C M Michel,et al.  Extracranial localization of intracranial interictal epileptiform activity using LORETA (low resolution electromagnetic tomography). , 1997, Electroencephalography and clinical neurophysiology.

[229]  Daniel C. Javitt,et al.  Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysis☆ , 2003, NeuroImage.

[230]  R J Ilmoniemi,et al.  Dynamic neuroimaging of brain function. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.