An isogeometric method for the Reissner-Mindlin plate bending problem

We present a new isogeometric method for the discretization of the Reissner–Mindlin plate bending problem. The proposed scheme follows a recent theoretical framework that makes possible the construction of a space of smooth discrete deflections Wh and a space of smooth discrete rotations Θh such that the Kirchhoff constraint is exactly satisfied at the limit. Therefore we obtain a formulation which is natural from the theoretical/mechanical viewpoint and locking-free by construction. We prove that the method is uniformly stable and satisfies optimal convergence estimates. Finally, the theoretical results are fully supported by numerical tests.

[1]  Richard S. Falk,et al.  Locking-free finite elements for the Reissner-Mindlin plate , 2000, Math. Comput..

[2]  I. Babuska,et al.  The plate paradox for hard and soft support , 1990 .

[3]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[4]  T. Hughes,et al.  A three-node mindlin plate element with improved transverse shear , 1985 .

[5]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[6]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[7]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[8]  M. Fortin,et al.  ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .

[9]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[10]  Ferdinando Auricchio,et al.  Analysis of kinematic linked interpolation methods for Reissner-Mindlin plate problems , 1999 .

[11]  Carlo Lovadina,et al.  Analysis of a mixed finite element method for the Reissner-Mindlin plate problems , 1998 .

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  C. Chinosi,et al.  Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates , 1995 .

[14]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[15]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[16]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[17]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[18]  Ricardo G. Durán,et al.  On mixed finite element methods for the Reissner-Mindlin plate model , 1992 .

[19]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[20]  D. Arnold,et al.  Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model , 1996 .

[21]  I. Babuska,et al.  THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT by , 2022 .

[22]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[23]  Thomas J. R. Hughes,et al.  A mixed finite element formulation for Reissner—Mindlin plate theory: uniform convergence of all higher-order spaces , 1988 .

[24]  R HughesTJ,et al.  ライスナー,ミンドリン平板理論に関する混合有限要素定式化 全高次空間の一様収束 , 1988 .

[25]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[26]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[27]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[28]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[29]  A mixed finite element method for the elastoplastic plate bending and buckling , 1985 .

[30]  K. Bathe,et al.  Mixed-interpolated elements for Reissner–Mindlin plates , 1989 .

[31]  Thomas J. R. Hughes,et al.  Nonlinear Isogeometric Analysis , 2009 .

[32]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[33]  Dominique Chapelle,et al.  An optimal low-order locking-free finite element method for Reissner-Mindlin plates , 1998 .

[34]  J. Craggs Applied Mathematical Sciences , 1973 .

[35]  Andreas Rössle,et al.  Corner Singularities and Regularity Results for the Reissner/Mindlin Plate Model , 2011 .

[36]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[37]  Lourenço Beirão da Veiga Finite Element Methods for a Modified Reissner-Mindlin Free Plate Model , 2004, SIAM J. Numer. Anal..

[38]  Carlo Lovadina,et al.  A Low-order Nonconforming Finite Element for Reissner-Mindlin Plates , 2004, SIAM J. Numer. Anal..

[39]  Giancarlo Sangalli,et al.  Isogeometric Analysis: new stable elements for the Stokes equation , 2010 .