Optimizing large parameter sets in variational quantum Monte Carlo
暂无分享,去创建一个
We present a technique for optimizing hundreds of thousands of variational parameters in variational quantum Monte Carlo. By introducing iterative Krylov subspace solvers and by multiplying by the Hamiltonian and overlap matrices as they are sampled, we remove the need to construct and store these matrices and thus bypass the most expensive steps of the stochastic reconfiguration and linear method optimization techniques. We demonstrate the effectiveness of this approach by using stochastic reconfiguration to optimize a correlator product state wave function with a Pfaffian reference for four example systems. In two examples on the two dimensional Fermionic Hubbard model, we study 16 and 64 site lattices, recovering energies accurate to 1% in the smaller lattice and predicting particle-hole phase separation in the larger. In two examples involving an ab initio Hamiltonian, we investigate the potential energy curve of a symmetrically dissociated 4 × 4 hydrogen lattice as well as the singlet-triplet gap in free base porphin. In the hydrogen system we recover 98% or more of the correlation energy at all geometries, while for porphin we compute the gap in a 24 orbital active space to within 0.02 eV of the exact result. The number of variational parameters in these examples ranges from 4 × 10^3 to 5 × 10^5.