A Framework for Approximating Qubit Unitaries

We present an algorithm for efficiently approximating of qubit unitaries over gate sets derived from totally definite quaternion algebras. It achieves $\varepsilon$-approximations using circuits of length $O(\log(1/\varepsilon))$, which is asymptotically optimal. The algorithm achieves the same quality of approximation as previously-known algorithms for Clifford+T [arXiv:1212.6253], V-basis [arXiv:1303.1411] and Clifford+$\pi/12$ [arXiv:1409.3552], running on average in time polynomial in $O(\log(1/\varepsilon))$ (conditional on a number-theoretic conjecture). Ours is the first such algorithm that works for a wide range of gate sets and provides insight into what should constitute a "good" gate set for a fault-tolerant quantum computer.

[1]  Krysta Marie Svore,et al.  Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..

[2]  A. Lubotzky,et al.  Hecke operators and distributing points on the sphere I , 1986 .

[3]  David McKinnon,et al.  Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets , 2015, 1501.04944.

[4]  Karim Belabas,et al.  Topics in computational algebraic number theory , 2004 .

[5]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[6]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[7]  Vadym Kliuchnikov,et al.  New methods for Quantum Compiling , 2014 .

[8]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[9]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[10]  Joachim von zur Gathen,et al.  Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..

[11]  Craig Gentry,et al.  Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.

[12]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[13]  Damien Stehlé,et al.  Floating-Point LLL Revisited , 2005, EUROCRYPT.

[14]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[15]  Jean Bourgain,et al.  On the spectral gap for finitely-generated subgroups of SU(2) , 2007 .

[16]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[17]  Dennis A. Garbanati An algorithm for finding an algebraic number whose norm is a given rational number. , 1980 .

[18]  Tsit Yuen Lam,et al.  Introduction To Quadratic Forms Over Fields , 2004 .

[19]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[20]  Philippe Gille,et al.  Central Simple Algebras and Galois Cohomology , 2017 .

[21]  Claus Fieker,et al.  A polynomial time algorithm for computing the HNF of a module over the integers of a number field , 2012, ISSAC.

[22]  David Poulin,et al.  Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.

[23]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[24]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[25]  Markus Kirschmer,et al.  Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..

[26]  Austin G. Fowler Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..

[27]  John Cremona,et al.  ADVANCED TOPICS IN COMPUTATIONAL NUMBER THEORY (Graduate Texts in Mathematics 193) , 2001 .

[28]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[29]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[30]  Johanna Weiss,et al.  Arithmetique Des Algebres De Quaternions , 2016 .

[31]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[32]  Dmitri Maslov,et al.  Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits , 2012, IEEE Transactions on Computers.

[33]  Shawn X. Cui,et al.  Universal quantum computation with metaplectic anyons , 2014, 1405.7778.

[34]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[35]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[37]  Vincenzo Acciaro,et al.  Computing Local Artin Maps, and Solvability of Norm Equations , 2000, J. Symb. Comput..

[38]  A. Lubotzky,et al.  Hecke operators and distributing points on S2. II , 1987 .

[39]  Christoph Thiel On the complexity of some problems in algorithmic algebraic number theory , 1995 .

[40]  Shawn X. Cui,et al.  Efficient topological compilation for a weakly integral anyonic model , 2015, 1504.03383.

[41]  Ravi Kannan,et al.  Improved algorithms for integer programming and related lattice problems , 1983, STOC.

[42]  Fang Song,et al.  A quantum algorithm for computing the unit group of an arbitrary degree number field , 2014, STOC.

[43]  J. Neukirch Algebraic Number Theory , 1999 .

[44]  Damien Stehlé,et al.  Short Bases of Lattices over Number Fields , 2010, ANTS.

[45]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[46]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[47]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[48]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[49]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[50]  Sean Hallgren,et al.  Fast quantum algorithms for computing the unit group and class group of a number field , 2005, STOC '05.

[51]  Martin Rötteler,et al.  Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.

[52]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[53]  Damien Stehlé,et al.  Low-dimensional lattice basis reduction revisited , 2004, TALG.

[54]  Claus Fieker,et al.  On solving relative norm equations in algebraic number fields , 1997, Math. Comput..

[55]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[56]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[57]  Vadym Kliuchnikov,et al.  A framework for exact synthesis , 2015, ArXiv.

[58]  Marina Daecher,et al.  Introduction To Cyclotomic Fields , 2016 .

[59]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[60]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[61]  Y. Gurevich,et al.  Optimal ancilla-free Pauli+V circuits for axial rotations , 2014, 1412.1033.

[62]  Denis Simon Solving norm equations in relative number fields using S-units , 2002, Math. Comput..

[63]  Damien Stehlé,et al.  An LLL Algorithm with Quadratic Complexity , 2009, SIAM J. Comput..

[64]  Jean Bourgain,et al.  Spectral gaps in SU(d) , 2010 .

[65]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[66]  Damien Stehlé,et al.  Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices , 2000, ICALP.

[67]  Craig Gentry,et al.  Cryptanalysis of the Revised NTRU Signature Scheme , 2002, EUROCRYPT.

[68]  A. Storjohann Algorithms for matrix canonical forms , 2000 .