暂无分享,去创建一个
Martin Rötteler | Vadym Kliuchnikov | Jon Yard | Alex Bocharov | M. Rötteler | J. Yard | A. Bocharov | Vadym Kliuchnikov | Alex Bocharov
[1] Krysta Marie Svore,et al. Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..
[2] A. Lubotzky,et al. Hecke operators and distributing points on the sphere I , 1986 .
[3] David McKinnon,et al. Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets , 2015, 1501.04944.
[4] Karim Belabas,et al. Topics in computational algebraic number theory , 2004 .
[5] B. Recht,et al. Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.
[6] Neil J. Ross,et al. Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..
[7] Vadym Kliuchnikov,et al. New methods for Quantum Compiling , 2014 .
[8] A. Steane. Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.
[9] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[10] Joachim von zur Gathen,et al. Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..
[11] Craig Gentry,et al. Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.
[12] Dmitri Maslov,et al. Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.
[13] Damien Stehlé,et al. Floating-Point LLL Revisited , 2005, EUROCRYPT.
[14] Y. Gurevich,et al. Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.
[15] Jean Bourgain,et al. On the spectral gap for finitely-generated subgroups of SU(2) , 2007 .
[16] Martin Rötteler,et al. Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.
[17] Dennis A. Garbanati. An algorithm for finding an algebraic number whose norm is a given rational number. , 1980 .
[18] Tsit Yuen Lam,et al. Introduction To Quadratic Forms Over Fields , 2004 .
[19] L. Washington. Introduction to Cyclotomic Fields , 1982 .
[20] Philippe Gille,et al. Central Simple Algebras and Galois Cohomology , 2017 .
[21] Claus Fieker,et al. A polynomial time algorithm for computing the HNF of a module over the integers of a number field , 2012, ISSAC.
[22] David Poulin,et al. Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.
[23] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[24] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[25] Markus Kirschmer,et al. Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..
[26] Austin G. Fowler. Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..
[27] John Cremona,et al. ADVANCED TOPICS IN COMPUTATIONAL NUMBER THEORY (Graduate Texts in Mathematics 193) , 2001 .
[28] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[29] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[30] Johanna Weiss,et al. Arithmetique Des Algebres De Quaternions , 2016 .
[31] Krysta Marie Svore,et al. Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.
[32] Dmitri Maslov,et al. Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits , 2012, IEEE Transactions on Computers.
[33] Shawn X. Cui,et al. Universal quantum computation with metaplectic anyons , 2014, 1405.7778.
[34] Peter Selinger,et al. Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..
[35] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[36] George Labahn,et al. Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.
[37] Vincenzo Acciaro,et al. Computing Local Artin Maps, and Solvability of Norm Equations , 2000, J. Symb. Comput..
[38] A. Lubotzky,et al. Hecke operators and distributing points on S2. II , 1987 .
[39] Christoph Thiel. On the complexity of some problems in algorithmic algebraic number theory , 1995 .
[40] Shawn X. Cui,et al. Efficient topological compilation for a weakly integral anyonic model , 2015, 1504.03383.
[41] Ravi Kannan,et al. Improved algorithms for integer programming and related lattice problems , 1983, STOC.
[42] Fang Song,et al. A quantum algorithm for computing the unit group of an arbitrary degree number field , 2014, STOC.
[43] J. Neukirch. Algebraic Number Theory , 1999 .
[44] Damien Stehlé,et al. Short Bases of Lattices over Number Fields , 2010, ANTS.
[45] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[46] Michele Mosca,et al. An algorithm for the T-count , 2013, Quantum Inf. Comput..
[47] Dmitri Maslov,et al. Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..
[48] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[49] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[50] Sean Hallgren,et al. Fast quantum algorithms for computing the unit group and class group of a number field , 2005, STOC '05.
[51] Martin Rötteler,et al. Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.
[52] Shafi Goldwasser,et al. Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.
[53] Damien Stehlé,et al. Low-dimensional lattice basis reduction revisited , 2004, TALG.
[54] Claus Fieker,et al. On solving relative norm equations in algebraic number fields , 1997, Math. Comput..
[55] Michael A. Nielsen,et al. The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..
[56] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[57] Vadym Kliuchnikov,et al. A framework for exact synthesis , 2015, ArXiv.
[58] Marina Daecher,et al. Introduction To Cyclotomic Fields , 2016 .
[59] Matthew B. Hastings,et al. Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..
[60] Michael Larsen,et al. A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.
[61] Y. Gurevich,et al. Optimal ancilla-free Pauli+V circuits for axial rotations , 2014, 1412.1033.
[62] Denis Simon. Solving norm equations in relative number fields using S-units , 2002, Math. Comput..
[63] Damien Stehlé,et al. An LLL Algorithm with Quadratic Complexity , 2009, SIAM J. Comput..
[64] Jean Bourgain,et al. Spectral gaps in SU(d) , 2010 .
[65] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[66] Damien Stehlé,et al. Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices , 2000, ICALP.
[67] Craig Gentry,et al. Cryptanalysis of the Revised NTRU Signature Scheme , 2002, EUROCRYPT.
[68] A. Storjohann. Algorithms for matrix canonical forms , 2000 .