Dispersion of mass and the complexity of randomized geometric algorithms

[1]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[2]  DAVID DOBKIN,et al.  A Lower Bound of the ½n² on Linear Search Programs for the Knapsack Problem , 1978, J. Comput. Syst. Sci..

[3]  György Elekes,et al.  A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..

[4]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[5]  Computing the volume is difficult , 1987, Discret. Comput. Geom..

[6]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[7]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[8]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[9]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[10]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[11]  J. Bourgain On the distribution of polynomials on high dimensional convex sets , 1991 .

[12]  Keith Ball,et al.  Normed spaces with a weak-Gordon-Lewis property , 1991 .

[13]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[14]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[15]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[16]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[17]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[18]  Sergey G. Bobkov,et al.  On the Central Limit Property of Convex Bodies , 2003 .

[19]  Miklós Simonovits,et al.  How to compute the volume in high dimension? , 2003, Math. Program..

[20]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[21]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..

[22]  S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007 .

[23]  S. Vempala Geometric Random Walks: a Survey , 2007 .