Versatile Fabrication of Complex Shaped Metal Oxide Nano-Microstructures and Their Interconnected Networks for Multifunctional Applications

Metal oxide nano-microstructures are applied in photocatalytic surfaces, sensors or biomedical engineering, proving the versatile utilization of nanotechnology. However, more complex or interconnected nano-microstructures are still seldomly met in practical applications, although they are of higher interest, due to enhanced structural, electronic and piezoelectric properties, as well as several complex biomedical effects, like antiviral characteristics. Here we attempt to present an overview of the novel, facile and cost-efficient flame transport synthesis (FTS) which allows controlled growth of different nano-microstructures and their interconnected networks in a scalable process. Various morphologies of nano-microstructures synthesized by FTS and its variants are demonstrated. These nano-microstructures have shown potential applications in different fields and the most relevant are reviewed here. Fabrication, growth mechanisms and properties of such large and highly porous three-dimensional (3D) interconnected networks of metal oxides (ZnO, SnO2, Fe2O3) nano-microstructures including carbon based aerographite material using FTS approaches are discussed along with their potential applications.

[1]  Rainer Adelung,et al.  Integration of thin-film-fracture-based nanowires into microchip fabrication. , 2008, Small.

[2]  Tianyou Zhai,et al.  ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors , 2009 .

[3]  S. Gorb,et al.  Ceramics: Fabrication of Macroscopically Flexible and Highly Porous 3D Semiconductor Networks from Interpenetrating Nanostructures by a Simple Flame Transport Approach (Part. Part. Syst. Charact. 9/2013) , 2013 .

[4]  R. Adelung,et al.  Epitactically Interpenetrated High Quality ZnO Nanostructured Junctions on Microchips Grown by the Vapor−Liquid−Solid Method , 2010 .

[5]  Oleg Lupan,et al.  Self-assembly of densely packed and aligned bilayer ZnO nanorod arrays , 2009 .

[6]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[7]  Amit V. Desai,et al.  Mechanical properties of ZnO nanowires , 2007 .

[8]  G. Emelchenko,et al.  Ultraviolet photoconductive sensor based on single ZnO nanowire , 2010 .

[9]  Sebastian Wille,et al.  Examples for the integration of self‐organized nanowires for functional devices by a fracture approach , 2010 .

[10]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[11]  V. Ursaki,et al.  Highly luminescent columnar ZnO films grown directly on n-Si and p-Si substrates by low-temperature electrochemical deposition , 2011 .

[12]  S. Ogale,et al.  Au–ZnO: A tunable localized surface plasmonic nanocomposite , 2008 .

[13]  Oleg Lupan,et al.  ighly sensitive and selective hydrogen single-nanowire nanosensor , 2012 .

[14]  S. Gorb,et al.  Joining the Un‐Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers , 2012, Advanced materials.

[15]  S T Aruna,et al.  COMBUSTION SYNTHESIS: AN UPDATE , 2002 .

[16]  V. Ursaki,et al.  ynthesis and characterization of Cu-doped ZnO one-dimensional structures for iniaturized sensor applications with faster response , 2012 .

[17]  M. Meyyappan,et al.  Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids , 2013, 1306.6711.

[18]  Veaceslav Ursaki,et al.  Photoluminescence of chemical bath deposited ZnO:Al films treated by rapid thermal annealing , 2005 .

[19]  R. Adelung,et al.  Procedures and Properties for a Direct Nano-Micro Integration of Metal and Semiconductor Nanowires on Si Chips , 2012 .

[20]  Ion Tiginyanu,et al.  Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature , 2010 .

[21]  Thierry Pauporté,et al.  Low‐Voltage UV‐Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting Diodes , 2010, Advanced materials.

[22]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[23]  B. Viana,et al.  Low-Temperature Growth of ZnO Nanowire Arrays on p-Silicon (111) for Visible-Light-Emitting Diode Fabrication , 2010 .

[24]  L. Chow,et al.  Fabrication and characterization of Zn–ZnO core–shell microspheres from nanorods , 2008 .

[25]  Yong Ding,et al.  Three‐Dimensional Tungsten Oxide Nanowire Networks , 2005 .

[26]  W. Stark,et al.  Flame Synthesis of Complex Fluoride-Based Nanoparticles as Upconversion Phosphors , 2013 .

[27]  K. Ostrikov,et al.  Plasma effects in semiconducting nanowire growth. , 2012, Nanoscale.

[28]  R. Adelung,et al.  Tin Oxide Nanowires Suppress Herpes Simplex Virus-1 Entry and Cell-to-Cell Membrane Fusion , 2012, PloS one.

[29]  V. Ursaki,et al.  Optical properties of ZnO nanowire arrays electrodeposited on n- and p-type Si(1 1 1): Effects of thermal annealing , 2011 .

[30]  R. Devan,et al.  One‐Dimensional Metal‐Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications , 2012 .

[31]  A. Umar,et al.  Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. , 2013, Journal of biomedical nanotechnology.

[32]  Christophe Ballif,et al.  Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. , 2006, Nano letters.

[33]  T. Aubert,et al.  Tunable Visible Emission of Luminescent Hybrid Nanoparticles Incorporating Two Complementary Luminophores: ZnO Nanocrystals and [Mo6Br14]2− Nanosized Cluster Units , 2013 .

[34]  R. Amal,et al.  Zinc Oxide Nanoparticles Induce Cell Filamentation in Escherichia coli , 2013 .

[35]  Hyung-Shik Shin,et al.  Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells , 2011, JBIC Journal of Biological Inorganic Chemistry.

[36]  E. Choi,et al.  ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. , 2013, Journal of biomedical nanotechnology.

[37]  Mansoo Choi,et al.  A flame metal combustion method for production of nanoparticles , 2010 .

[38]  Shikuan Yang,et al.  Blue Luminescence of ZnO Nanoparticles Based on Non‐Equilibrium Processes: Defect Origins and Emission Controls , 2010 .

[39]  S. Pratsinis,et al.  Flame-made nanoparticles for nanocomposites , 2010 .

[40]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.

[41]  Sören Kaps,et al.  Toxicity of Functional Nano-Micro Zinc Oxide Tetrapods: Impact of Cell Culture Conditions, Cellular Age and Material Properties , 2014, PloS one.

[42]  Ilaria Ciofini,et al.  Wavelength‐Emission Tuning of ZnO Nanowire‐Based Light‐Emitting Diodes by Cu Doping: Experimental and Computational Insights , 2011 .

[43]  Ion Tiginyanu,et al.  Fabrication and characterization of an individual ZnO microwire-based UV photodetector , 2011 .

[44]  R. Adelung,et al.  Strain-controlled growth of nanowires within thin-film cracks , 2004, Nature materials.

[45]  A Paul Alivisatos,et al.  Luminescent nanocrystal stress gauge , 2010, Proceedings of the National Academy of Sciences.

[46]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[47]  R. Adelung,et al.  Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. , 2012, Antiviral research.

[48]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[49]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[50]  Zhao Wang,et al.  Hollow Urchin‐like ZnO thin Films by Electrochemical Deposition , 2010, Advanced materials.

[51]  R. Theissmann,et al.  Synthesis of Small Hollow ZnO Nanospheres from the Gas Phase , 2013 .

[52]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[53]  A. Minor,et al.  In Situ Electromechanical Study of ZnO Nanowires , 2013, Microscopy and Microanalysis.

[54]  Liwei Lin,et al.  Tetrapod nanocrystals as fluorescent stress probes of electrospun nanocomposites. , 2013, Nano letters.

[55]  Z. Qian,et al.  A Simple Hydrothermal Method for the Growth of ZnO Crystals , 2012 .

[56]  Sebastian Wille,et al.  Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors , 2014, Advanced materials.

[57]  Yogendra Kumar Mishra,et al.  Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance , 2012, Advanced materials.

[58]  R. Adelung,et al.  Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability , 2012 .

[59]  David R Nelson,et al.  Direct visualization of dislocation dynamics in grain-boundary scars , 2005, Nature materials.

[60]  Veaceslav Ursaki,et al.  Synthesis and characterization of ZnO nanowires for nanosensor applications , 2010 .

[61]  M. Niederberger,et al.  Microwave chemistry for inorganic nanomaterials synthesis. , 2010, Nanoscale.

[62]  Xingao Gong,et al.  An Optimized Ultraviolet‐A Light Photodetector with Wide‐Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt , 2012, Advanced materials.

[63]  R. Adelung,et al.  A Novel Concept for Self‐Reporting Materials: Stress Sensitive Photoluminescence in ZnO Tetrapod Filled Elastomers , 2013, Advanced materials.

[64]  R. Adelung,et al.  Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1. , 2011, Antiviral research.

[65]  L. Chow,et al.  FIB fabrication of ZnO nanotetrapod and cross‐sensor , 2010 .

[66]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[67]  Ilaria Ciofini,et al.  High Aspect Ratio Ternary Zn1–xCdxO Nanowires by Electrodeposition for Light-Emitting Diode Applications , 2011 .

[68]  S. Dwivedi,et al.  ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. , 2013, Journal of biomedical nanotechnology.

[69]  Lizeng Gao,et al.  Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. , 2006, Small.

[70]  R. Adelung,et al.  Superposition twinning supported by texture in ZnO nanospikes , 2013 .

[71]  Zhong Lin Wang From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures , 2012 .