Chaos Theory for Evolutionary Algorithms Researchers

This chapter deals with chaotic systems. Based on the characterization of deterministic chaos, universal features of that kind of behavior are explained. It is shown that despite the deterministic nature of chaos, long term behavior is unpredictable. This is called sensitivity to initial conditions. We further give a concept of quantifying chaotic dynamics: the Lyapunov exponent. Moreover, we explain how chaos can originate from order by period doubling, intermittence, chaotic transients and crises. In the second part of the chapter we discuss different examples of systems showing chaos, for instance mechanical, electronic, biological, meteorological, algorithmical and astronomical systems.

[1]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[2]  Rodney C. Wolff,et al.  Local Lyapunov Exponents: Looking Closely at Chaos , 1992 .

[3]  Gregory L. Baker,et al.  Chaotic dynamics: Contents , 1996 .

[4]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[5]  Peter Constantin,et al.  Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations , 1985 .

[6]  H. Peitgen,et al.  Functional Differential Equations and Approximation of Fixed Points , 1979 .

[7]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[8]  Heinz G. Schuster,et al.  Handbook of Chaos Control: SCHUSTER:HDBK.CHAOS CONTR O-BK , 1999 .

[9]  P. Cvitanović Universality in Chaos , 1989 .

[10]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[11]  F. Takens Detecting strange attractors in turbulence , 1981 .

[12]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[13]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin's entropy formula , 1985 .

[14]  H. Haken Synergetics: Introduction and Advanced Topics , 2004 .

[15]  J. Sprott Chaos and time-series analysis , 2001 .

[16]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[17]  V. I. Arnolʹd The Theory of Singularities and its Applications , 1991 .

[18]  Eckehard Schöll,et al.  Handbook of Chaos Control , 2007 .

[19]  O. Rössler An equation for hyperchaos , 1979 .

[20]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[21]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[22]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[23]  G. P. King,et al.  Interpretation of Time Series from Nonlinear Systems , 1992 .

[24]  P. G. Drazin,et al.  Interpretation of Time Series from Nonlinear Systems. Volume 58. Proceedings of the IUTAM Symposium and NATO Advanced Research Workshop on the Interpretation of Time Series from Nonlinear Mechanical Systems Held in England on 26 - 30 August 1991, , 1992 .

[25]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[26]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[27]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[28]  Willi-Hans Steeb,et al.  Chaos in electronics , 1997 .

[29]  C. Diks Nonlinear time series analysis , 1999 .

[30]  N. K. Bose,et al.  Neural Network Fundamentals with Graphs, Algorithms and Applications , 1995 .

[31]  Alden H. Wright,et al.  Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.

[32]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[33]  Alden H. Wright,et al.  Cyclic and chaotic behavior in genetic algorithms , 2001 .

[34]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[35]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .

[36]  Andreas Galka,et al.  Topics in Nonlinear Time Series Analysis, with Implications for Eeg Analysis , 2000 .