A study on field-emission array pressure sensors☆

Abstract In view of the specific advantages of using vacuum as the device medium and a field-emission cathode as electron source, a renewed interest in vacuum microelectronics utilizing advanced IC technology is emerging. This paper presents an application of field-emission arrays in a novel pressure sensor. Both cone-shaped and wedge-shaped emitter arrays are studied. Various wet and dry etching techniques for forming the emitter arrays are compared. A combined wet/dry fabrication process is developed to achieve array uniformity and reproducibility. The characteristics of a pressure sensor with an ideal field-emission array are simulated, and methods to take into consideration the non-uniformity of array tips, an inevitable result of the fabrication process, are also discussed. The performance of a fabricated pressure sensor with a cone-shaped emitter array is evaluated.

[1]  W. P. Dyke,et al.  The Field Emitter: Fabrication, Electron Microscopy, and Electric Field Calculations , 1953 .

[2]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[3]  M. Shimbo,et al.  Silicon‐to‐silicon direct bonding method , 1986 .

[4]  W. J. Orvis,et al.  Field emission from tungsten-clad silicon pyramids , 1989 .

[5]  J. Lasky Wafer bonding for silicon‐on‐insulator technologies , 1986 .

[6]  D. Schroder,et al.  Fabrication and some applications of large-area silicon field emission arrays , 1974 .

[7]  Ultra small electron beam amplifiers , 1986, 1986 International Electron Devices Meeting.

[8]  R. Finne,et al.  A Water‐Amine‐Complexing Agent System for Etching Silicon , 1967 .

[9]  J. T. Trujillo,et al.  Formation of silicon tips with <1 nm radius , 1990 .

[10]  H.C. Lee,et al.  Simulation and design of field emitter array , 1990, IEEE Electron Device Letters.

[11]  C. Horwitz Hollow cathode reactive sputter etching—A new high‐rate process , 1983 .

[12]  R. Howard,et al.  50−nm silicon structures fabricated with trilevel electron beam resist and reactive‐ion etching , 1981 .

[13]  Robert Meyer,et al.  Sealed vacuum devices: fluorescent microtip displays , 1991 .

[14]  Phillip W. Barth,et al.  Silicon fusion bonding for fabrication of sensors, actuators and microstructures , 1990 .

[15]  O. J. Glembocki,et al.  Fabrication and Characterization of Si Membranes , 1988 .

[16]  R. B. Marcus,et al.  The Oxidation of Shaped Silicon Surfaces , 1982 .

[17]  R. Stahlbush,et al.  Bias‐Dependent Etching of Silicon in Aqueous KOH , 1985 .

[18]  N. Lewis,et al.  Silicon and silicon dioxide thermal bonding for silicon‐on‐insulator applications , 1988 .

[19]  E. Palik,et al.  Study of the Orientation Dependent Etching and Initial Anodization of Si in Aqueous KOH , 1983 .

[20]  R. Huang,et al.  A theoretical study on field emission array for microsensors , 1992 .

[21]  T. Y. Bin,et al.  CAPSS: A thin diaphragm capacitive pressure sensor simulator , 1987 .

[22]  D. B. Lee Anisotropic Etching of Silicon , 1969 .

[23]  R. Greene,et al.  Vacuum integrated circuits , 1985, 1985 International Electron Devices Meeting.

[24]  S. D. Collins,et al.  Study of electrochemical etch-stop for high-precision thickness control of silicon membranes , 1989 .

[25]  C. Spindt,et al.  Field-emitter arrays for vacuum microelectronics , 1991 .

[26]  H. J. Mcskimin,et al.  Elastic Moduli of Silicon vs Hydrostatic Pressure at 25.0°C and − 195.8°C , 1964 .