Integrated photon-pair sources with nonlinear optics

Assisted by the rapid development of photonic integrated circuits, scalable and versatile chip-based quantum light sources with nonlinear optics are increasingly tangible for real-world applications. In this review, we introduce the basic concepts behind parametric photon pair sources and discuss the current state-of-the-art photon pair generation in detail but also highlight future perspectives in hybrid integration, novel waveguide structures, and on-chip multiplexing. The advances in near-deterministic integrated photon pair sources are deemed to pave the way for the realization of large-scale quantum photonic integrated circuits for applications, including quantum telecommunication, quantum sensing, quantum metrology, and photonic quantum computing.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  D B Ostrowsky,et al.  High-performance guided-wave asynchronous heralded single-photon source. , 2005, Optics letters.

[3]  Simone Atzeni,et al.  Integrated sources of entangled photons at telecom wavelength in femtosecond-laser-written circuits , 2017, 1710.09618.

[4]  C. Silberhorn,et al.  Limits on the deterministic creation of pure single-photon states using parametric down-conversion , 2011, 1111.4095.

[5]  Marc Sorel,et al.  Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing. , 2016, Optics express.

[6]  John G. Rarity,et al.  Intrinsically narrowband pair photon generation in microstructured fibres , 2011, 1102.4415.

[7]  H. Suchomel,et al.  Invited Article: Time-bin entangled photon pairs from Bragg-reflection waveguides , 2018, APL Photonics.

[8]  Ivan Favero,et al.  Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons , 2015, 1507.05558.

[9]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[10]  R. Walker High-speed III-V semiconductor intensity modulators , 1991 .

[11]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.

[12]  Roberto Morandotti,et al.  Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip , 2015, Nature Communications.

[13]  Yin-Hai Li,et al.  On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire , 2017 .

[14]  L. Caspani,et al.  Towards spontaneous parametric down conversion from monolayer MoS2 , 2018, Scientific Reports.

[15]  Barry M. Holmes,et al.  Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip , 2013 .

[16]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[17]  Sébastien Tanzilli,et al.  On-chip generation of heralded photon-number states , 2016, Scientific Reports.

[18]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[19]  H. Herrmann,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010, 2010 12th International Conference on Transparent Optical Networks.

[20]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[21]  Shellee D. Dyer,et al.  Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-oxide semiconductor microelectronics chip , 2015, 1507.01121.

[22]  H. Takesue,et al.  Entanglement generation using silicon wire waveguide , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[23]  N. Matsuda,et al.  Optical nonlinearity enhancement with graphene-decorated silicon waveguides , 2017, Scientific Reports.

[24]  L. Pavesi,et al.  Near-ideal spontaneous photon sources in silicon quantum photonics , 2020, Nature Communications.

[25]  P. Russell Photonic Crystal Fibers , 2003, Science.

[26]  Hiroshi Fukuda,et al.  Indistinguishable photon pair generation using two independent silicon wire waveguides , 2011 .

[27]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[28]  James C. Gates,et al.  Chip-based array of near-identical, pure, heralded single-photon sources , 2016, 1603.06984.

[29]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[30]  M. Takeoka,et al.  Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator. , 2017, Optics express.

[31]  Masaya Notomi,et al.  Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide. , 2011, Optics express.

[32]  C. M. Natarajan,et al.  Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. , 2012, Optics express.

[33]  Alan L. Migdall,et al.  Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs , 2007 .

[34]  Marek Zukowski,et al.  Two-photon Franson-type experiments and local realism , 1999 .

[35]  Guang-Can Guo,et al.  Generation of multiphoton quantum states on silicon , 2019, Light: Science & Applications.

[36]  A. Helmy,et al.  Generation of maximally-polarization-entangled photons on a chip , 2012 .

[37]  Jun Chen,et al.  All-fiber photon-pair source for quantum communications: Improved generation of correlated photons. , 2004 .

[38]  Kyo Inoue,et al.  Generation of pulsed polarization-entangled photon pairs in a 1.55-microm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit. , 2005, Optics letters.

[39]  R. Baets,et al.  Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits , 2017, Journal of Lightwave Technology.

[40]  V. Quiring,et al.  A two-channel, spectrally degenerate polarization entangled source on chip , 2016, 1604.03430.

[41]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  S. Mookherjea,et al.  Photon pair generation from compact silicon microring resonators using microwatt-level pump powers. , 2015, Optics express.

[43]  Photon-pair production at the nanoscale with hybrid nonlinear/plasmonic antennas , 2018, 1806.08702.

[44]  B. Sohn,et al.  Correlated photon pair generation in ultra-silicon-rich nitride waveguide , 2020 .

[45]  Hugo Zbinden,et al.  High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators. , 2019, Optics express.

[46]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[47]  Peng Wang,et al.  Progress, Challenges, and Opportunities for 2D Material Based Photodetectors , 2018, Advanced Functional Materials.

[48]  Wei Zhang,et al.  Noise performance comparison of 1.5 microm correlated photon pair generation in different fibers. , 2010, Optics express.

[49]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[50]  O. Alibart,et al.  Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment , 2006 .

[51]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[52]  Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion , 2017, Scientific Reports.

[53]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[54]  Kyo Inoue,et al.  Generation of Quantum-Correlated Photon Pairs in Optical Fiber: Influence of Spontaneous Raman Scattering , 2004 .

[55]  J G Rarity,et al.  Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources. , 2009, Optics express.

[56]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[57]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[58]  Femtosecond laser written diamond waveguides: A step towards integrated photonics in the far infrared , 2018, Optical Materials.

[59]  M. Chekhova,et al.  Microscale Generation of Entangled Photons without Momentum Conservation. , 2019, Physical review letters.

[60]  Shayan Mookherjea,et al.  Progress towards a widely usable integrated silicon photonic photon-pair source , 2020, OSA Continuum.

[61]  Jun Chen,et al.  Quantum-correlated twin photons from microstructure fiber. , 2004, Optics express.

[62]  S. Massar,et al.  Generation of correlated photons in hydrogenated amorphous-silicon waveguides , 2011, 1102.1030.

[63]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[64]  Jiangde Peng,et al.  Correlated Photon Pair Generation in Silicon Wire Waveguides at 1.5 mum , 2010 .

[65]  Cinzia Sada,et al.  Optical waveguides in lithium niobate: Recent developments and applications , 2015 .

[66]  S Wabnitz,et al.  Second-harmonic generation in silicon waveguides strained by silicon nitride. , 2012, Nature materials.

[67]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[68]  Dirk Englund,et al.  Hybrid integration methods for on-chip quantum photonics , 2019 .

[69]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[70]  Zhipei Sun Optical modulators with two-dimensional layered materials , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[71]  Gregor Weihs,et al.  Monolithic source of photon pairs. , 2012, Physical review letters.

[72]  J. Rarity,et al.  High brightness single mode source of correlated photon pairs using a photonic crystal fiber. , 2005, Optics express.

[73]  C. Kurtsiefer,et al.  Absolute rates of Spontaneous Parametric Down Conversion into a single transverse Gaussian mode , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[74]  C. Xiong,et al.  Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics , 2012, 1210.0975.

[75]  J. O'Brien Optical Quantum Computing , 2007, Science.

[76]  M. Thompson,et al.  GaAs integrated quantum photonics: Towards compact and multi‐functional quantum photonic integrated circuits , 2016, 1601.06956.

[77]  Ugo,et al.  High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators , 2019 .

[78]  Wolfram H. P. Pernice,et al.  Diamond as a Platform for Integrated Quantum Photonics , 2018, Advanced Quantum Technologies.

[79]  Seth Lloyd,et al.  Advances in photonic quantum sensing , 2018, Nature Photonics.

[80]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[81]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[82]  A. Sukhorukov,et al.  Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials. , 2016, Physical review letters.

[83]  Amos Martinez,et al.  Photon‐Pair Generation with a 100 nm Thick Carbon Nanotube Film , 2017, Advanced materials.

[84]  J P Torres,et al.  Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. , 2013, Optics express.

[85]  Peter G. Kazansky,et al.  Glass Fibre Poling and Applications , 1997, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications.

[86]  T. Krauss,et al.  Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. , 2011, Optics letters.

[87]  Wolfram H. P. Pernice,et al.  Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate , 2013, Scientific Reports.

[88]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[89]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[90]  B. Brecht,et al.  Photon temporal modes: a complete framework for quantum information science , 2015, 1504.06251.

[91]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[92]  K. Rottwitt,et al.  Multichannel Photon-Pair Generation with Strong and Uniform Spectral Correlation in a Silicon Microring Resonator , 2019, Physical Review Applied.

[93]  S. Assefa,et al.  Heralded single photons from a silicon nanophotonic chip , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[94]  D. Klyshko,et al.  Field Statistics in Parametric Luminescence , 1969 .

[95]  H. Thacker,et al.  Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. , 2012, Optics express.

[96]  H. Thienpont,et al.  Graphene’s nonlinear-optical physics revealed through exponentially growing self-phase modulation , 2018, Nature Communications.

[97]  Yuchen Wang,et al.  Coherent mid-infrared supercontinuum generation in tapered suspended-core As39Se61 fibers pumped by a few-optical-cycle Cr:ZnSe laser. , 2020, Optics letters.

[98]  Sae Woo Nam,et al.  Heralding single photons from a high-Q silicon microdisk , 2016 .

[99]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[100]  Matthew D. Shaw,et al.  Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g^(2)(0) < 0006 , 2017, 1710.01001.

[101]  Anatoly V. Zayats,et al.  Spontaneous photon-pair generation from a dielectric nanoantenna , 2019, Optica.

[102]  张巍,et al.  Correlated Photon Pair Generation in Silicon Wire Waveguides at 1.5 μm , 2010 .

[103]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[104]  S. Massar,et al.  Silicon-on-insulator integrated source of polarization-entangled photons. , 2013, Optics letters.

[105]  F. Xia,et al.  Heralded single photons from a silicon nanophotonic chip , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[106]  B. Gerardot,et al.  On-chip single photon emission from a waveguide-coupled two-dimensional semiconductor , 2020, Quantum Nanophotonic Materials, Devices, and Systems 2020.

[107]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[108]  C. M. Natarajan,et al.  Generation of correlated photon pairs in a chalcogenide As2S3 waveguide , 2010, 1011.1688.

[109]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[110]  Jeffrey A. Steidle,et al.  On-Chip Quantum Interference from a Single Silicon Ring-Resonator Source , 2015 .

[111]  H. Takesue,et al.  Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide. , 2010, Optics letters.

[112]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[113]  Marc Savanier,et al.  Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator , 2015 .

[114]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[115]  Zhongyuan Yu,et al.  Design of spontaneous parametric down-conversion in integrated hybrid SixNy-PPLN waveguides. , 2019, Optics express.

[116]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[117]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[118]  X. Bai,et al.  Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity , 2020, Nature Nanotechnology.

[119]  Ting Wang,et al.  Enhanced optical Kerr nonlinearity of graphene/Si hybrid waveguide , 2018, 2018 Asia Communications and Photonics Conference (ACP).

[120]  P. Kwiat,et al.  Joint spectral characterization of photon-pair sources , 2018, 1801.01195.

[121]  Nicolas Gisin,et al.  Waveguide-based OPO source of entangled photon pairs , 2009, 0909.1208.

[122]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[123]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[124]  Peter G. Kazansky,et al.  Parametric fluorescence in periodically poled silica fibers , 1999 .

[125]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[126]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[127]  Zhipei Sun,et al.  Optical modulators with 2 D layered materials , 2016 .

[128]  H. Tang,et al.  Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors , 2019, 1912.09418.

[129]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[130]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .

[131]  Fatih Yaman,et al.  Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization , 2007 .

[132]  M. Amanti,et al.  Generation and symmetry control of quantum frequency combs , 2020, npj Quantum Information.

[133]  Kai Chen,et al.  Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. , 2007, Physical review letters.

[134]  K. Srinivasan,et al.  Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 μm from a silicon coupled-resonator optical waveguide. , 2013, Optics letters.

[135]  Peter C Humphreys,et al.  On-chip low loss heralded source of pure single photons. , 2013, Optics express.

[136]  Gong-Ru Lin,et al.  Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s , 2015, Scientific Reports.

[137]  Anton Autere,et al.  Nonlinear Optics with 2D Layered Materials , 2018, Advanced materials.

[138]  Qing Li,et al.  Chip-integrated visible–telecom entangled photon pair source for quantum communication , 2018, Nature Physics.

[139]  1.5 μm polarization entanglement generation based on birefringence in silicon wire waveguides. , 2013, Optics letters.

[140]  Sven Ramelow,et al.  Frequency multiplexing for quasi-deterministic heralded single-photon sources , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[141]  V. Lorenz,et al.  Dual-pump approach to photon-pair generation: demonstration of enhanced characterization and engineering capabilities. , 2019, Optics express.

[142]  Alberto Tosi,et al.  Inherent polarization entanglement generated from a monolithic semiconductor chip , 2013, Scientific Reports.

[143]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[144]  Zhipei Sun,et al.  Difference frequency generation in monolayer MoS2. , 2020, Nanoscale.

[145]  Michael Hochberg,et al.  Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing , 2016, Scientific Reports.

[146]  Bin Fang,et al.  State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing. , 2013, Optics express.

[147]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[148]  B. Eggleton,et al.  Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides , 2016, 1602.07915.

[149]  Robert Fickler,et al.  Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits , 2012 .

[150]  N. Matsuda,et al.  Evaluation of graphene optical nonlinearity with photon-pair generation in graphene-on-silicon waveguides. , 2019, Optics express.

[151]  J. O'Brien,et al.  Photon pair generation in hydrogenated amorphous silicon microring resonators , 2016, Scientific reports.

[152]  K. Garay-Palmett,et al.  Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions , 2016, Scientific Reports.

[153]  Carlo Sirtori,et al.  Electrically injected photon-pair source at room temperature. , 2013, Physical review letters.

[154]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[155]  Photon number statistics of multimode parametric down-conversion. , 2008, Physical review letters.

[156]  K. Rottwitt,et al.  High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide , 2017 .

[157]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[158]  Hiroshi Fukuda,et al.  Generation of high-purity entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[159]  John Malowicki,et al.  Generation of high-purity entangled photon pair in a short highly nonlinear fiber. , 2013, Optics letters.

[160]  F. Wong,et al.  Harnessing high-dimensional hyperentanglement through a biphoton frequency comb , 2015, Nature Photonics.

[161]  Benjamin J. Eggleton,et al.  Hybrid photonic circuit for multiplexed heralded single photons , 2014, 1402.7202.

[162]  M. Sorel,et al.  Ultra-low power generation of twin photons in a compact silicon ring resonator. , 2012, Optics express.

[163]  Kyo Inoue,et al.  Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers , 2005 .

[164]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[165]  Roberto Morandotti,et al.  Integrated frequency comb source of heralded single photons. , 2014, Optics express.

[166]  Damien Bonneau,et al.  On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. , 2017, Optics express.

[167]  Ming C. Wu,et al.  240×240 Wafer-Scale Silicon Photonic Switches , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[168]  Zhipei Sun,et al.  Electrical Control of Interband Resonant Nonlinear Optics in Monolayer MoS2 , 2020, ACS nano.

[169]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[170]  R. Buczyński Photonic Crystal Fibers , 2004 .

[171]  Ming-Cheng Chen,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[172]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[173]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[174]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[175]  Igor Jex,et al.  Dual-path source engineering in integrated quantum optics , 2015, 1505.01416.

[176]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[177]  W. Kolthammer,et al.  On-chip III-V monolithic integration of heralded single photon sources and beamsplitters , 2017, 1710.08710.

[178]  Zhenzhen Zhang,et al.  Generation of quantum correlated photons in different spatial modes using few-mode fibers , 2018 .

[179]  O. Alibart,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010 .

[180]  Jiayang Wu,et al.  Enhanced nonlinear optical figure-of-merit at 1550nm for silicon nanowires integrated with graphene oxide layered films , 2020, 2004.08043.

[181]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[182]  A. Lemaître,et al.  Two-photon interference with a semiconductor integrated source at room temperature. , 2010, Optics express.

[183]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[184]  Li Qian,et al.  High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide. , 2014, Optics letters.

[185]  Kyunghun Han,et al.  50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. , 2018, Optics express.

[186]  Christophe Couteau,et al.  Spontaneous parametric down-conversion , 2018, Contemporary Physics.

[187]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[188]  B. Eggleton,et al.  Constraints on downconversion in atomically thick films , 2018 .

[189]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[190]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[191]  T. Kippenberg,et al.  Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins , 2018, Optica.

[192]  S. Mookherjea,et al.  High Quality Entangled Photon Pair Generation in Periodically Poled Thin-Film Lithium Niobate Waveguides. , 2020, Physical review letters.

[193]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[194]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[195]  L J Wang,et al.  Efficient generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[196]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[197]  Philippe Emplit,et al.  Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber. , 2007, Optics express.

[198]  P. Kwiat,et al.  High-efficiency single-photon generation via large-scale active time multiplexing , 2018, Science Advances.

[199]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[200]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[201]  N. Imoto,et al.  Frequency-Multiplexed Photon Pairs Over 1000 Modes from a Quadratic Nonlinear Optical Waveguide Resonator with a Singly Resonant Configuration. , 2019, Physical review letters.

[202]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[203]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[204]  M. Ibsen,et al.  Poled-fiber source of broadband polarization-entangled photon pairs. , 2013, Optics letters.

[205]  Hiroshi Fukuda,et al.  Generation of polarization entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[206]  P. Kumar,et al.  Observation of twin-beam-type quantum correlation in optical fiber. , 2001, Optics letters.

[207]  M. Galli,et al.  Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities , 2013, 1307.5206.

[208]  A. Gulinatti,et al.  Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality , 2015, Scientific Reports.

[209]  Minghao Qi,et al.  Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb , 2016, 1611.03774.

[210]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[211]  C. Xiong,et al.  Optical frequency comb generation from aluminum nitride microring resonator. , 2013, Optics letters.

[212]  Sae Woo Nam,et al.  High-brightness, low-noise, all-fiber photon pair source. , 2009, Optics express.

[213]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[214]  Xu Zhou,et al.  Graphene photonic crystal fibre with strong and tunable light–matter interaction , 2019, Nature Photonics.

[215]  Oskar Painter,et al.  Silicon-chip source of bright photon pairs. , 2015, Optics express.

[216]  Zhipei Sun,et al.  Single-photon sources with quantum dots in III–V nanowires , 2019, Nanophotonics.

[217]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[218]  Roberto Morandotti,et al.  CMOS-compatible, multiplexed source of heralded photon pairs: towards integrated quantum combs , 2014 .

[219]  Marijn A. M. Versteegh,et al.  Semiconductor devices for entangled photon pair generation: a review , 2017, Reports on progress in physics. Physical Society.

[220]  E. Pomarico,et al.  Engineering integrated pure narrow-band photon sources , 2011, 1108.5542.

[221]  C. Hong,et al.  Generation of correlated photons via four-wave mixing in optical fibres , 2000, QELS 2000.

[222]  N. Matsuda,et al.  Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides. , 2013, Optics express.

[223]  G. Guo,et al.  Progress on Integrated Quantum Photonic Sources with Silicon , 2019, Advanced Quantum Technologies.

[224]  H. Atwater,et al.  Quantum nonlinear light emission in metamaterials: broadband Purcell enhancement of parametric downconversion , 2018 .

[225]  Yoshimasa Sugimoto,et al.  Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. , 2004, Optics express.

[226]  M. Ibsen,et al.  Direct generation of polarization-entangled photon pairs in a poled fiber. , 2012, Physical review letters.

[227]  R. Osellame,et al.  Femtosecond Laser Inscription of Low Insertion Loss Waveguides in $Z$-Cut Lithium Niobate , 2007, IEEE Photonics Technology Letters.

[228]  M. N. Armenise,et al.  Fabrication techniques of lithium niobate waveguides , 1988 .

[229]  Wolfgang Freude,et al.  Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. , 2009, Optics express.

[230]  Dan Dalacu,et al.  On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits , 2017, Nature Communications.

[231]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[232]  C. H. Chu,et al.  Metalens-array–based high-dimensional and multiphoton quantum source , 2020, Science.

[233]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[234]  Yu-Ping Huang,et al.  Direct Generation and Detection of Quantum Correlated Photons with 3.2 um Wavelength Spacing , 2017, Scientific Reports.

[235]  R. A. Soref,et al.  Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components , 1985 .

[236]  Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide. , 2014, Optics letters.

[237]  Vladimir M. Shalaev,et al.  Material Platforms for Integrated Quantum Photonics , 2016 .

[238]  M. Kanatzidis,et al.  Metal Chalcogenides: A Rich Source of Nonlinear Optical Materials , 2014 .

[239]  Marco Bentivegna,et al.  High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip , 2016, 1609.00521.

[240]  T. Aoki,et al.  Time-bin entangled photon pair generation from Si micro-ring resonator. , 2015, Optics express.

[241]  Zhipei Sun,et al.  Twisting for Tunable Nonlinear Optics , 2020, Matter.

[242]  H. Tsang,et al.  Entangled photon pair generation from an InP membrane micro-ring resonator , 2019, Applied Physics Letters.

[243]  David J. Moss,et al.  Integrated micro-comb sources for quantum optical applications. , 2020, 2001.02356.

[244]  A. Helmy,et al.  Two Polarization Entangled Sources from the Same Semiconductor Chip , 2015, 1511.01963.

[245]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[246]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[247]  Christian Reimer,et al.  Quantum optical microcombs , 2019, Nature Photonics.

[248]  L J Wang,et al.  Generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[249]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[250]  J. Chen Two-photon-state generation via four-wave mixing in optical fibers (9 pages) , 2005 .

[251]  Takashi Kondo,et al.  Second-order nonlinear susceptibilities of various dielectric and semiconductor materials , 2002 .

[252]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[253]  U. Andersen,et al.  Quantum light from a whispering-gallery-mode disk resonator. , 2010, Physical review letters.

[254]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[255]  Masaya Notomi,et al.  Entangled photons from on-chip slow light , 2014, Scientific Reports.

[256]  H. Takesue,et al.  Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[257]  Mansoor Sheik-Bahae,et al.  Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/ in wide bandgap solids , 1996 .

[258]  S. Maekawa,et al.  Nonlinear optical susceptibilities of AlN film , 1977 .

[259]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[260]  Hiroki Takesue,et al.  Entanglement generation using silicon wire waveguide , 2007, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[261]  Ivan Favero,et al.  Photon pair sources in AlGaAs: from electrical injection to quantum state engineering , 2015 .

[262]  Ming Li,et al.  On-chip transverse-mode entangled photon pair source , 2018, npj Quantum Information.

[263]  Luis Arizmendi,et al.  Photonic applications of lithium niobate crystals , 2004 .

[264]  G. Agrawal,et al.  Silicon waveguides for creating quantum-correlated photon pairs. , 2006, Optics letters.

[265]  K. Neyts,et al.  Nanophotonic Pockels modulators on a silicon nitride platform , 2018, Nature Communications.

[266]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[267]  Christine Silberhorn,et al.  An optimized photon pair source for quantum circuits. , 2013, Optics express.

[268]  F. Setzpfandt,et al.  Generation of Counterpropagating Path-Entangled Photon Pairs in a Single Periodic Waveguide. , 2017, Physical review letters.

[269]  Hon Ki Tsang,et al.  Nonlinear optical properties of silicon waveguides , 2008 .

[270]  B J Eggleton,et al.  Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. , 2010, Optics express.

[271]  Kyo Inoue,et al.  1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. , 2005, Optics express.

[272]  A. Eckstein,et al.  Bell states generation on a III-V semiconductor chip at room temperature , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[273]  Thomas Pertsch,et al.  Tunable generation of entangled photons in a nonlinear directional coupler , 2015, 1507.03321.

[274]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[275]  O. Alibart,et al.  Quantum interference with photon pairs using two micro-structured fibres , 2006, QELS 2006.

[276]  Sae Woo Nam,et al.  Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source , 2015 .

[277]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[278]  María Ramos Vázquez,et al.  Femtosecond laser written photonic and microfluidic circuits in diamond , 2019, Journal of Physics: Photonics.

[279]  Michal Lipson,et al.  Overcoming SiN film stress limitations for high quality factor ring resonators , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[280]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.