Machine learning approach for shaft crack detection through acoustical emission signals
暂无分享,去创建一个
X. Li | J. Wu | S. Xu | M. J. Er | L. Wei | W. F. Lu | J. Wu | M. Er | S. Xu | X. Li | L. Wei | W. F. Lu
[1] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[2] Tai-hoon Kim,et al. Use of Artificial Neural Network in Pattern Recognition , 2010 .
[3] B. C. Nakra,et al. TECHNICAL ARTICLE practical articles in shock and vibration technology: Vibration and Acoustic Monitoring Techniques for the Detection of Defects in Rolling Element Bearings -- a Review , 1992 .
[4] T. I. El-Wardany,et al. Tool condition monitoring in drilling using vibration signature analysis , 1996 .
[5] Robert B. Randall,et al. Rolling element bearing diagnostics—A tutorial , 2011 .
[6] Jyh-Shing Roger Jang,et al. ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..
[7] C. James Li,et al. DIAGNOSTIC RULE EXTRACTION FROM TRAINED FEEDFORWARD NEURAL NETWORKS , 2002 .
[8] Joseph Mathew,et al. A COMPARISON OF AUTOREGRESSIVE MODELING TECHNIQUES FOR FAULT DIAGNOSIS OF ROLLING ELEMENT BEARINGS , 1996 .
[9] Jörg Wauer,et al. On the Dynamics of Cracked Rotors: A Literature Survey , 1990 .
[10] B. Samanta,et al. ARTIFICIAL NEURAL NETWORK BASED FAULT DIAGNOSTICS OF ROLLING ELEMENT BEARINGS USING TIME-DOMAIN FEATURES , 2003 .
[11] N. Tandon,et al. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings , 1999 .