Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem

We prove local and pointwise error estimates for the local discontinuous Galerkin method applied to the Stokes problem in two and three dimensions. By using techniques originally developed by A. Schatz [Math. Comp., 67 (1998), 877-899] to prove pointwise estimates for the Laplace equation, we prove optimal weighted pointwise estimates for both the velocity and the pressure for domains with smooth boundaries.

[1]  R. H. Nochetto,et al.  Pointwise accuracy of a stable Petrov-Galerkin approximation to the stokes problem , 1989 .

[2]  Ricardo H. Nochetto,et al.  Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D , 1988 .

[3]  R. Durán,et al.  An explicit right inverse of the divergence operator which is continuous in weighted norms , 2001 .

[4]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[5]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[6]  Johnny Guzmán Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems , 2006, Math. Comput..

[7]  Alan Demlow Piecewise linear finite element methods are not localized , 2004, Math. Comput..

[8]  Alfred H. Schatz Perturbations of Forms and Error Estimates for the Finite Element Method at a Point, with an Application to Improved Superconvergence Error Estimates for Subspaces that Are Symmetric with Respect to a Point , 2005, SIAM J. Numer. Anal..

[9]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[10]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[11]  Alfred H. Schatz,et al.  Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids: Part II. Interior Estimates , 2000, SIAM J. Numer. Anal..

[12]  Hongsen Chen,et al.  Local error estimates of mixed discontinuous Galerkin methods for elliptic problems , 2004, J. Num. Math..

[13]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[14]  Hongsen Chen,et al.  Pointwise Error Estimates for Finite Element Solutions of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[15]  L. Wahlbin,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[16]  Ricardo H. Nochetto,et al.  Weighted inf-sup condition and pointwise error estimates for the Stokes problem , 1990 .

[17]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[18]  H SchatzAlfred Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids , 2000 .

[19]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[20]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[21]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[22]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[23]  Ricardo H. Nochetto,et al.  Stability of the finite element Stokes projection in W1 , 2004 .

[24]  Douglas N. Arnold,et al.  Local error estimates for finite element discretization of the Stokes equations , 1995 .

[25]  R. Temam Navier-Stokes Equations , 1977 .

[26]  Guido Kanschat,et al.  The local discontinuous Galerkin method for linearized incompressible fluid flow: a review , 2005 .

[27]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[28]  Guido Kanschat,et al.  The local discontinuous Galerkin method for the Oseen equations , 2003, Math. Comput..

[29]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..