Sensors' optimal dimensionality compression matrix in estimation fusion

When there exists the limitation of communication bandwidth between sensors and a fusion center, one needs to optimally pre-compress sensor outputs-sensor observations or estimates before sensors' transmission to obtain a constrained optimal estimation at the fusion center in terms of the linear minimum error variance criterion. This paper will give an analytic solution of the optimal linear dimensionality compression matrix for the single sensor case and analyze the existence of the optimal linear dimensionality compression matrix for the multisensor case, as well as how to implement a Gauss-Seidel algorithm to search for an optimal solution to linear dimensionality compression matrix.

[1]  Kai-Yuan Cai,et al.  Multisensor Decision And Estimation Fusion , 2003, The International Series on Asian Studies in Computer and Information Science.

[2]  Keh-Ping Dunn,et al.  Kalman Filter Configurations for Multiple Radar Systems , 1976 .

[3]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking , 1995 .

[4]  Yunmin Zhu,et al.  Efficient recursive state estimator for dynamic systems without knowledge of noise covariances , 1999 .

[5]  Luciano Alparone,et al.  Lossy compression of multispectral remote-sensing images through multiresolution data fusion techniques , 2003, SPIE Optics + Photonics.

[6]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[7]  Y. Bar-Shalom On the track-to-track correlation problem , 1981 .

[8]  John N. Tsitsiklis,et al.  Data fusion with minimal communication , 1994, IEEE Trans. Inf. Theory.

[9]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[10]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[11]  Yunmin Zhu,et al.  Optimal dimensionality reduction of sensor data in multisensor estimation fusion , 2005, IEEE Trans. Signal Process..

[12]  Enbin Song,et al.  Two new results of linear minimum variance estimation , 2005, 2005 International Conference on Control and Automation.

[13]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[14]  Lang Rong,et al.  Multiplatform multisensor fusion with adaptive-rate data communication , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Guanrong Chen,et al.  Kalman filtering: with real-time applications (2nd ed.) , 1991 .

[16]  Glenn D. Hines,et al.  Multisensor fusion and enhancement using the Retinex image enhancement algorithm , 2002, SPIE Defense + Commercial Sensing.

[17]  H. Wielandt An extremum property of sums of eigenvalues , 1955 .