PPM-Decay: A computational model of auditory prediction with memory decay

Statistical learning and probabilistic prediction are fundamental processes in auditory cognition. A prominent computational model of these processes is Prediction by Partial Matching (PPM), a variable-order Markov model that learns by internalizing n-grams from training sequences. However, PPM has limitations as a cognitive model: in particular, it has a perfect memory that weights all historic observations equally, which is inconsistent with memory capacity constraints and recency effects observed in human cognition. We address these limitations with PPM-Decay, a new variant of PPM that introduces a customizable memory decay kernel. In three studies – one with artificially generated sequences, one with chord sequences from Western music, and one with new behavioral data from an auditory pattern detection experiment – we show how this decay kernel improves the model’s predictive performance for sequences whose underlying statistics change over time, and enables the model to capture effects of memory constraints on auditory pattern detection. The resulting model is available in our new open-source R package, ppm (https://github.com/pmcharrison/ppm).

[1]  John G. Cleary,et al.  Unbounded Length Contexts for PPM , 1997 .

[2]  Frank Wijnen,et al.  Non‐adjacent Dependency Learning in Humans and Other Animals , 2018, Top. Cogn. Sci..

[3]  Jill X. O'Reilly,et al.  Making predictions in a changing world—inference, uncertainty, and learning , 2013, Front. Neurosci..

[4]  Martin Rohrmeier,et al.  Implicit Learning of Recursive Context-Free Grammars , 2012, PloS one.

[5]  Jürgen Schmidhuber,et al.  Flat Minima , 1997, Neural Computation.

[6]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[7]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[8]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[9]  J. Lotz Speech and Language , 1950 .

[10]  N. Squires,et al.  The effect of stimulus sequence on the waveform of the cortical event-related potential. , 1976, Science.

[11]  Marcia K. Johnson,et al.  Implicit Perceptual Anticipation Triggered by Statistical Learning , 2010, The Journal of Neuroscience.

[12]  John G. Cleary,et al.  Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.

[13]  I. Winkler,et al.  I Heard That Coming: Event-Related Potential Evidence for Stimulus-Driven Prediction in the Auditory System , 2009, The Journal of Neuroscience.

[14]  David Huron,et al.  Music Information Processing Using the Humdrum Toolkit: Concepts, Examples, and Lessons , 2002, Computer Music Journal.

[15]  Gordon J. Ross Parametric and Nonparametric Sequential Change Detection in R: The cpm package , 2012 .

[16]  Marcus T. Pearce,et al.  Information-Theoretic Properties of Auditory Sequences Dynamically Influence Expectation and Memory , 2018, Cogn. Sci..

[17]  Philipp Koehn,et al.  Cognitive Psychology , 1992, Ageing and Society.

[18]  Charles S. Watson,et al.  Auditory Processing of Complex Sounds , 1990 .

[19]  Ian Cross,et al.  Statistical Properties of Tonal Harmony in Bach ’ s Chorales , 2008 .

[20]  D. Shanahan,et al.  Diachronic Changes in Jazz Harmony: A Cognitive Perspective , 2013 .

[21]  Mounya Elhilali,et al.  Detecting change in stochastic sound sequences , 2018, PLoS Comput. Biol..

[22]  S. Thompson-Schill,et al.  Varying Timescales of Stimulus Integration Unite Neural Adaptation and Prototype Formation , 2016, Current Biology.

[23]  John Burgoyne Stochastic processes and database-driven musicology , 2012 .

[24]  Erik D. Thiessen,et al.  Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition , 2015 .

[25]  F. Pachet,et al.  Surprising Harmonies , 1999 .

[26]  Geraint A. Wiggins,et al.  The Prediction of Merged Attributes with Multiple Viewpoint Systems , 2016 .

[27]  Trevor de Clercq,et al.  A corpus analysis of rock harmony , 2011, Popular Music.

[28]  Geraint A. Wiggins,et al.  Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music , 2013, Cognitive, Affective, & Behavioral Neuroscience.

[29]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[30]  Karl J. Friston,et al.  Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns , 2016, Proceedings of the National Academy of Sciences.

[31]  Marcus T. Pearce,et al.  Compression-based Modelling of Musical Similarity Perception , 2017 .

[32]  Peter Dayan,et al.  Forget-me-some: General versus special purpose models in a hierarchical probabilistic task , 2018, PloS one.

[33]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[34]  Elyse H. Norton,et al.  Suboptimal Criterion Learning in Static and Dynamic Environments , 2017, PLoS Comput. Biol..

[35]  Geraint A. Wiggins,et al.  EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND LEARNING , 2006 .

[36]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[37]  S. Jeong Harmony , 2012, SIGGRAPH '12.

[38]  Thore Graepel,et al.  Comparing Feature-Based Models of Harmony , 2012 .

[39]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[40]  S. Dehaene,et al.  Evidence for a hierarchy of predictions and prediction errors in human cortex , 2011, Proceedings of the National Academy of Sciences.

[41]  T. Rowan Functional stability analysis of numerical algorithms , 1990 .

[42]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[43]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[44]  Suzanne Bunton,et al.  Semantically Motivated Improvements for PPM Variants , 1997, Comput. J..

[45]  Augusto Sarti,et al.  A Data-Driven Model of Tonal Chord Sequence Complexity , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[46]  Mounya Elhilali,et al.  A Model for Statistical Regularity Extraction from Dynamic Sounds , 2018, Acta acustica united with acustica : the journal of the European Acoustics Association.

[47]  Jonathan D. Cohen,et al.  Sequential effects: Superstition or rational behavior? , 2008, NIPS.

[48]  Geraint A. Wiggins,et al.  Improved Methods for Statistical Modelling of Monophonic Music , 2004 .

[49]  Min Zhang,et al.  Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development , 2018, PloS one.

[50]  Peter M C Harrison,et al.  Dissociating sensory and cognitive theories of harmony perception through computational modeling , 2018 .

[51]  I. Nelken,et al.  Modeling the auditory scene: predictive regularity representations and perceptual objects , 2009, Trends in Cognitive Sciences.

[52]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[53]  A. Friederici,et al.  The right inferior frontal gyrus processes nested non-local dependencies in music , 2018, Scientific Reports.

[54]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[55]  William P. Birmingham,et al.  Algorithms for Chordal Analysis , 2002, Computer Music Journal.

[56]  François Pachet,et al.  Predicting the Composer and Style of Jazz Chord Progressions , 2014 .

[57]  I. Winkler,et al.  Predictive Regularity Representations in Violation Detection and Auditory Stream Segregation: From Conceptual to Computational Models , 2014, Brain Topography.

[58]  Douglas Steinley,et al.  K-means clustering: a half-century synthesis. , 2006, The British journal of mathematical and statistical psychology.

[59]  Raymond J. Dolan,et al.  Outlier Responses Reflect Sensitivity to Statistical Structure in the Human Brain , 2013, PLoS Comput. Biol..

[60]  David Temperley,et al.  Statistical Analysis of Harmony and Melody in Rock Music , 2013 .

[61]  Ian Cross,et al.  Tacit tonality - Implicit learning of context-free harmonic structure , 2009 .

[62]  R. Nigel Horspool,et al.  Data Compression Using Dynamic Markov Modelling , 1987, Comput. J..

[63]  M. Pearce Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation , 2018, Annals of the New York Academy of Sciences.

[64]  W. Penny,et al.  Time Scales of Representation in the Human Brain: Weighing Past Information to Predict Future Events , 2011, Front. Hum. Neurosci..

[65]  A. Endress Learning melodies from non-adjacent tones. , 2010, Acta psychologica.

[66]  B. Repp Categorical Perception: Issues, Methods, Findings , 1984 .

[67]  B. Tillmann,et al.  Please Scroll down for Article the Quarterly Journal of Experimental Psychology Auditory Expectations for Newly Acquired Structures , 2022 .

[68]  Craig Stuart Sapp Online Database of Scores in the Humdrum File Format , 2005, ISMIR.

[69]  Maria Chait,et al.  The role of temporal regularity in auditory segregation , 2011, Hearing Research.

[70]  Richard E. Ladner,et al.  On-line stochastic processes in data compression , 1996 .

[71]  Dimitris K. Tasoulis,et al.  Nonparametric Monitoring of Data Streams for Changes in Location and Scale , 2011, Technometrics.

[72]  M. Chait,et al.  Enhanced deviant responses in patterned relative to random sound sequences , 2017, Cortex.

[73]  M. Nees Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory , 2016, Front. Psychol..

[74]  Florent Meyniel,et al.  Human Inferences about Sequences: A Minimal Transition Probability Model , 2016, bioRxiv.

[75]  T. Griffiths,et al.  A Brain System for Auditory Working Memory , 2016, The Journal of Neuroscience.

[76]  Philip I. Pavlik,et al.  iMinerva: A Mathematical Model of Distributional Statistical Learning , 2013, Cogn. Sci..

[77]  Stefan Koelsch,et al.  Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences , 2016, Scientific Reports.

[78]  Ian H. Witten,et al.  Arithmetic coding revisited , 1998, TOIS.

[79]  Paul G. Howard,et al.  The design and analysis of efficient lossless data compression systems , 1993 .